bzoj 3357: [Usaco2004]等差数列 动态规划

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33229466/article/details/52886935

题意

给出n(1M-n<=2000)个数ai(0<=ai<=10^9),求最长的等差数列长度。

分析

我用的是nlogn的方法写的,勉强水了过去,顺便学习了已发map的用法。
f[i,j]表示结尾为ai倒数第二个数为j时的最大长度。
f[i,a[j]]=max(f[j,a[j]*2-a[i]],f[i,a[j]],2)

正解其实就是f[i,j]表示最后一个数是aj倒数第二个数是ai时的最大长度,每处理完一个i就把ai扔进hash里面,然后就可以O(1)转移了。

嘴巴AC!

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#define N 2005
using namespace std;

map <int,int> f[N];
int n,a[N];

int main()
{
    scanf("%d",&n);
    if (n==1)
    {
        printf("1");
        return 0;
    }
    for (int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    int ans=0;
    for (int i=2;i<=n;i++)
        for (int j=1;j<i;j++)
        {
            f[i][a[j]]=max(f[j][a[j]*2-a[i]]+1,max(f[i][a[j]],2));
            ans=max(ans,f[i][a[j]]);
        }
    printf("%d",ans);
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页