bzoj 4134: ljw和lzr的hack比赛 sg函数+字典树合并

题意

给一棵树,根节点为1,每个节点有黑白两种颜色。每次操作可以选择一个白点,然后将其到根节点的路径染黑,不能操作者算输。问先手必胜的第一步操作有哪些。
n<=100000

分析

恩感觉自己对sg函数还不是那么的熟练。

这题我们可以先将这棵树的黑点去掉,然后建一个森林。
然后设g[x]表示我选择操作x后其所在子树所能到达的状态,也就等于将x到根的路径去掉后森林的sg值异或和。sg[x]表示x为根的子树所代表的sg函数值。
显然sg[x]等于x所在子树的g值(包括x自己)去个mex。
sg和g求好之后,设l为森林的sg值异或和,那么对于每棵树,设其根为root,那么这棵树内的g值为l^sg[root]的节点均为答案。
现在考虑如何求sg和g值。
我们可以用递归的方式来求,先设g[x]表示删除x到当前点的路径后所能到达的状态,sg[x]不变。
那么我们可以先递归处理子树,然后要将每棵子树内节点的g值异或上除了该儿子外其他儿子的sg值异或和,然后再求个mex即可得到当前点的sg值。
怎么实现呢?
要求资瓷插入,合并,异或,求mex的操作,我们可以用字典树。
插入不多说。合并的话就跟线段树合并是一样的。异或的话可以考虑打标记,是1的话就交换左右儿子即可。求mex,只要每个节点维护一个bz[x]表示x所在的树是否是满二叉树即可。

恩细节比较多,调了一早上。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;

const int N=100005;
const int maxd=30;

int cnt,last[N],fa[N],a[N],a1,op[N],bin[35],sz,bz[N*maxd],sg[N],root[N],n;
struct trie{int son[2],rev;}t[N*maxd];
vector<int> id[N*maxd];
struct edge{int to,next;}e[N*2];

void addedge(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}

void dfs(int x,int y,int z)
{
    fa[x]=z;
    for (int i=last[x];i;i=e[i].next)
    {
        if (e[i].to==y) continue;
        if (op[x]) dfs(e[i].to,x,z);
        else dfs(e[i].to,x,x);
    }
}

void pushdown(int d,int now)
{
    if (now<0||!t[d].rev) return;
    int l=t[d].rev;t[d].rev=0;
    if (l&bin[now]) swap(t[d].son[0],t[d].son[1]);
    t[t[d].son[0]].rev^=l;t[t[d].son[1]].rev^=l;
}

void ins(int &d,int now,int x,int y)
{
    if (!d) d=++sz;
    else pushdown(d,now);
    if (now<0)
    {
        bz[d]=1;id[d].push_back(y);
        return;
    }
    int b;
    if (x&bin[now]) b=1;
    else b=0;
    ins(t[d].son[b],now-1,x,y);
    bz[d]=bz[t[d].son[0]]&bz[t[d].son[1]];
}

void merge(int &d,int p,int now)
{
    pushdown(d,now);pushdown(p,now);
    if (!d||!p)
    {
        d=p+d;return;
    }
    if (now<0)
    {
        for (vector<int>::iterator it=id[p].begin();it!=id[p].end();it++) id[d].push_back(*it);
        id[p].clear();
        return;
    }
    merge(t[d].son[0],t[p].son[0],now-1);
    merge(t[d].son[1],t[p].son[1],now-1);
}

int mex(int d,int now)
{
    pushdown(d,now);
    if (!t[d].son[0]) return 0;
    if (!bz[t[d].son[0]]) return mex(t[d].son[0],now-1);
    if (!t[d].son[1]) return 1<<now;
    return mex(t[d].son[1],now-1)+(1<<now);
}

void solve(int x,int fa)
{
    int w=0;
    for (int i=last[x];i;i=e[i].next)
    {
        if (e[i].to==fa) continue;
        solve(e[i].to,x);
        w^=sg[e[i].to];
    }
    for (int i=last[x];i;i=e[i].next)
    {
        if (e[i].to==fa) continue;
        int l=w^sg[e[i].to];
        t[root[e[i].to]].rev^=l;
        merge(root[x],root[e[i].to],maxd);
    }
    ins(root[x],maxd,w,x);
    sg[x]=mex(root[x],maxd);
}

void find(int d,int now,int x)
{
    if (!d) return;
    pushdown(d,now);
    if (now<0)
    {
        for (vector<int>::iterator it=id[d].begin();it!=id[d].end();it++) a[++a1]=*it;
        return;
    }
    int b;
    if (x&bin[now]) b=1;
    else b=0;
    find(t[d].son[b],now-1,x);
}

int main()
{
    bin[0]=1;
    for (int i=1;i<=maxd;i++) bin[i]=bin[i-1]*2;
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d",&op[i]);
    for (int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        addedge(x,y);
    }
    dfs(1,0,0);
    memset(last,0,sizeof(last));cnt=0;
    for (int i=1;i<=n;i++)
        if (!op[i]&&fa[i]) addedge(fa[i],i);
    int l=0;
    for (int i=1;i<=n;i++)
        if (!fa[i]&&!op[i])
        {
            solve(i,0);
            l^=sg[i];
        }
    if (!l) printf("-1");
    else
    {
        for (int i=1;i<=n;i++)
            if (!fa[i]&&!op[i]) find(root[i],maxd,l^sg[i]);
        sort(a+1,a+a1+1);
        for (int i=1;i<=a1;i++) printf("%d\n",a[i]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值