题意
有n个位置,每个位置有一个权值ai,若ai<0则ai必为-1,且有pi的概率获得这个值。初始值为K。现在问至少获得了L个值且获得的值的和不小于0的概率。
n<=200,L<=n,ai,K<=2000
分析
设f[i,j,k]表示到第i个位置,拿了j个值,当前和为k的概率。
显然若当前的值大于n的话就一定可以满足和不小于0,那么就把大于n的放到n这里就好了。
转移随便yy一下就好了。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=201;
int n,m,L,a[N];
double p[N],f[N][N][401];
void modify(int i,int j,int k,double w)
{
k=min(k,n);
f[i][j][k+n]+=w;
}
int main()
{
scanf("%d%d%d",&n,&L,&m);
for (int i=1;i<=n;i++) scanf("%lf",&p[i]),p[i]=1.0*p[i]/100;
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
if (m>n) f[0][0][n+n]=1;
else f[0][0][m+n]=1;
for (int i=0;i<n;i++)
for (int j=0;j<=i;j++)
for (int k=-n;k<=n;k++)
{
modify(i+1,j,k,1.0*(1-p[i+1])*f[i][j][k+n]);
modify(i+1,j+1,k+a[i+1],1.0*p[i+1]*f[i][j][k+n]);
}
double ans=0;
for (int j=L;j<=n;j++)
for (int k=0;k<=n;k++)
ans+=f[n][j][k+n];
printf("%.6lf",ans);
return 0;
}