bzoj 2839: 集合计数 排列组合+容斥原理

题意

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
n<=1000000

分析

首先我们枚举交集元素,方案显然为 Ckn 。那么我们选择的集合则必然要包含这k个元素,显然满足条件的集合有 2nk 个,因为集合的数量不固定但不能为0,则选择的方案有 22nk1 种。但我们发现会有一些选择方案使得交集包含另外的元素,于是就可以大力容斥一波。具体来说就是枚举另外包含的元素数量s,若s为偶数则答案加上 22nks1 ,否则就减去即可。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=1000005;
const int MOD=1000000007;

int n,k,jc[N],ny[N];

int ksm(int x,int y,int mo)
{
    int ans=1;
    while (y)
    {
        if (y&1) ans=(LL)ans*x%mo;
        x=(LL)x*x%mo;y>>=1;
    }
    return ans;
}

int C(int n,int m)
{
    return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}

int get(int s)
{
    int x=ksm(2,s,MOD-1);
    return ksm(2,x,MOD)-1;
}

int main()
{
    scanf("%d%d",&n,&k);
    jc[0]=ny[0]=1;
    for (int i=1;i<=n;i++) jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=ksm(jc[i],MOD-2,MOD);
    LL ans=0;
    for (int i=0;i<=n-k;i++)
        if (i%2==0) (ans+=(LL)C(n-k,i)*get(n-k-i))%=MOD;
        else (ans-=(LL)C(n-k,i)*get(n-k-i))%=MOD;
    ans=(LL)ans*C(n,k)%MOD;
    if (ans<0) ans+=MOD;
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值