题意
一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
n<=1000000
分析
首先我们枚举交集元素,方案显然为 Ckn 。那么我们选择的集合则必然要包含这k个元素,显然满足条件的集合有 2n−k 个,因为集合的数量不固定但不能为0,则选择的方案有 22n−k−1 种。但我们发现会有一些选择方案使得交集包含另外的元素,于是就可以大力容斥一波。具体来说就是枚举另外包含的元素数量s,若s为偶数则答案加上 22n−k−s−1 ,否则就减去即可。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N=1000005;
const int MOD=1000000007;
int n,k,jc[N],ny[N];
int ksm(int x,int y,int mo)
{
int ans=1;
while (y)
{
if (y&1) ans=(LL)ans*x%mo;
x=(LL)x*x%mo;y>>=1;
}
return ans;
}
int C(int n,int m)
{
return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}
int get(int s)
{
int x=ksm(2,s,MOD-1);
return ksm(2,x,MOD)-1;
}
int main()
{
scanf("%d%d",&n,&k);
jc[0]=ny[0]=1;
for (int i=1;i<=n;i++) jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=ksm(jc[i],MOD-2,MOD);
LL ans=0;
for (int i=0;i<=n-k;i++)
if (i%2==0) (ans+=(LL)C(n-k,i)*get(n-k-i))%=MOD;
else (ans-=(LL)C(n-k,i)*get(n-k-i))%=MOD;
ans=(LL)ans*C(n,k)%MOD;
if (ans<0) ans+=MOD;
printf("%lld",ans);
return 0;
}