bzoj 2037: [Sdoi2008]Sue的小球 动态规划

题意

Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船。然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩蛋,Sue有一个秘密武器,只要她将小船划到一个彩蛋的正下方,然后使用秘密武器便可以在瞬间收集到这个彩蛋。然而,彩蛋有一个魅力值,这个魅力值会随着彩蛋在空中降落的时间而降低,Sue要想得到更多的分数,必须尽量在魅力值高的时候收集这个彩蛋,而如果一个彩蛋掉入海中,它的魅力值将会变成一个负数,但这并不影响Sue的兴趣,因为每一个彩蛋都是不同的,Sue希望收集到所有的彩蛋。 然而Sandy就没有Sue那么浪漫了,Sandy希望得到尽可能多的分数,为了解决这个问题,他先将这个游戏抽象成了如下模型: 以Sue的初始位置所在水平面作为x轴。 一开始空中有N个彩蛋,对于第i个彩蛋,他的初始位置用整数坐标(xi, yi)表示,游戏开始后,它匀速沿y轴负方向下落,速度为vi单位距离/单位时间。Sue的初始位置为(x0, 0),Sue可以沿x轴的正方向或负方向移动,Sue的移动速度是1单位距离/单位时间,使用秘密武器得到一个彩蛋是瞬间的,得分为当前彩蛋的y坐标的千分之一。 现在,Sue和Sandy请你来帮忙,为了满足Sue和Sandy各自的目标,你决定在收集到所有彩蛋的基础上,得到的分数最高。
N < = 1000,对于100%的数据。 -10^4 < = xi,yi,vi < = 10^4

分析

按横坐标排序后,已选了的点一定是连续的一段。设f[i,j,0/1]表示选了[i,j]这一段,最后停留在左端点/右端点时的最高分数。注意这个代价算的是全局的代价,也就是说,每走一步,分数就要减去所有还没被选的点的速度总和。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=1005;
const int inf=(int)1e9;

int n,x0,f[N][N][2],pre[N],suf[N];
struct data{int x,y,v;}a[N];

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

bool cmp(data a,data b)
{
    return a.x<b.x;
}

void updata(int &x,int y)
{
    x=max(x,y);
}

int main()
{
    n=read();x0=read();
    for (int i=1;i<=n;i++) a[i].x=read()-x0;
    for (int i=1;i<=n;i++) a[i].y=read();
    for (int i=1;i<=n;i++) a[i].v=read();
    n++;
    sort(a+1,a+n+1,cmp);
    int sta=0;
    for (int i=1;i<=n;i++)
        for (int j=i;j<=n;j++)
            f[i][j][0]=f[i][j][1]=-inf;
    for (int i=1;i<=n;i++)
        if (!a[i].x&&!a[i].y&&!a[i].v)
        {
            sta=i;break;
        }
    f[sta][sta][0]=f[sta][sta][1]=0;
    for (int i=1;i<=n;i++) pre[i]=pre[i-1]+a[i].v;
    for (int i=n;i>=1;i--) suf[i]=suf[i+1]+a[i].v;
    for (int l=0;l<n-1;l++)
        for (int i=1;i+l<=n;i++)
        {
            int j=i+l;
            if (f[i][j][0]>-inf)
            {
                if (i-1>=1) updata(f[i-1][j][0],f[i][j][0]+a[i-1].y-(pre[i-1]+suf[j+1])*(a[i].x-a[i-1].x));
                if (j+1<=n) updata(f[i][j+1][1],f[i][j][0]+a[j+1].y-(pre[i-1]+suf[j+1])*(a[j+1].x-a[i].x));
            }
            if (f[i][j][1]>-inf)
            {
                if (i-1>=1) updata(f[i-1][j][0],f[i][j][1]+a[i-1].y-(pre[i-1]+suf[j+1])*(a[j].x-a[i-1].x));
                if (j+1<=n) updata(f[i][j+1][1],f[i][j][1]+a[j+1].y-(pre[i-1]+suf[j+1])*(a[j+1].x-a[j].x));
            }
        }
    printf("%.3lf",(double)max(f[1][n][0],f[1][n][1])/1000);
    return 0;
}
发布了1103 篇原创文章 · 获赞 146 · 访问量 45万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览