beginend

只要在路上,就没有到不了的远方

LibreOJ #2495.「AHOI / HNOI2018」转盘 线段树

题意

这里写图片描述
n,m100000

分析

首先有个结论,就是最有答案一定可以在某个时刻由某一个点出发,然后一步不停地走完。
我们设Ti+n=Ti,那么不难发现答案就是

mini=1n(maxj0(Ti+j+nj1))

我们设pi=Tii,那么答案就是
mini=1n(maxj0(pj)+i)+n1

我们可以用线段树来维护,对每个区间[l,r]维护i[l,mid],j[l,r]时的答案。
怎么维护这个呢?我们可以记录区间最大的pi,那么每次就类似于在单调栈的末尾加入一个数,然后维护一下就好了。
总的时间复杂度是O(nlog2n)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

const int N=200005;
const int inf=1000000000;

int n,m,ty,p[N],tim[N];
struct tree{int mx,lef,ans;}t[N*4];

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

int query(int d,int l,int r,int x)
{
    if (l==r) return t[d].mx>=x?l:0;
    int mid=(l+r)/2;
    if (t[d*2+1].mx>=x) return query(d*2+1,mid+1,r,x);
    else return query(d*2,l,mid,x);
}

int find(int d,int l,int r,int x)
{
    if (l==r) return t[d].mx>=x?t[d].ans:inf;
    int mid=(l+r)/2;
    if (t[d*2+1].mx>=x) return std::min(t[d].lef,find(d*2+1,mid+1,r,x));
    else return find(d*2,l,mid,x);
}

void updata(int d,int l,int r)
{
    int mid=(l+r)/2,x=t[d*2+1].mx;
    t[d].mx=std::max(t[d*2].mx,t[d*2+1].mx);
    int pos=std::max(query(d*2,l,mid,x),l-1);
    t[d].lef=std::min(find(d*2,l,mid,x),pos+1+x);
    t[d].ans=std::min(t[d].lef,t[d*2+1].ans);
}

void build(int d,int l,int r)
{
    if (l==r) {t[d].mx=tim[l]-l;t[d].ans=tim[l];return;}
    int mid=(l+r)/2;
    build(d*2,l,mid);build(d*2+1,mid+1,r);
    updata(d,l,r);
}

void modify(int d,int l,int r,int x)
{
    if (l==r) {t[d].mx=tim[l]-l;t[d].ans=tim[l];return;}
    int mid=(l+r)/2;
    if (x<=mid) modify(d*2,l,mid,x);
    else modify(d*2+1,mid+1,r,x);
    updata(d,l,r);
}

int main()
{
    n=read();m=read();ty=read();
    for (int i=1;i<=n;i++) tim[i]=tim[i+n]=read();
    for (int i=1;i<=n*2;i++) p[i]=tim[i]-i;
    build(1,1,n*2);
    int ans;
    printf("%d\n",ans=t[1].lef+n-1);
    while (m--)
    {
        int x=read()^(ty*ans),y=read()^(ty*ans);
        tim[x]=tim[x+n]=y;
        p[x]=y-x;p[x+n]=y-x-n;
        modify(1,1,n*2,x);
        modify(1,1,n*2,x+n);
        printf("%d\n",ans=t[1].lef+n-1);
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33229466/article/details/79980046
个人分类: 线段树
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

LibreOJ #2495.「AHOI / HNOI2018」转盘 线段树

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭