LibreOJ #6198.谢特 后缀数组+并查集+trie启发式合并

题意

给出一个长度为n的字符串S,以Si为开头的后缀有一个权值wi。对于两个不同的后缀SufiSufj,定义其价值为lcp(Sufi,Sufj)+wiwj,问所有后缀中两两价值的最大值。
n,wi100000

分析

先把sa建出来,然后枚举lcp,设为L,那么就把所有height不小于L的位置合并成一个集合,然后问每个集合中选两个元素异或起来的最大值。
那么只要从大到小枚举L,然后用trie启发式合并来实现查找异或最大值即可。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>

const int N=100005;

int n,b[N],c[N],d[N],rank[N*2],sa[N],height[N],f[N],rt[N],sz,bin[20],w[N];
char s[N];
std::vector<int> vec[N];
struct tree{int l,r;}t[N*20];

int find(int x)
{
    if (f[x]==x) return x;
    else return f[x]=find(f[x]);
}

void get_sa(int n,int m)
{
    for (int i=1;i<=n;i++) b[s[i]-'a'+1]++;
    for (int i=1;i<=m;i++) b[i]+=b[i-1];
    for (int i=n;i>=1;i--) c[b[s[i]-'a'+1]--]=i;
    int t=0;
    for (int i=1;i<=n;i++)
    {
        if (s[c[i]]!=s[c[i-1]]) t++;
        rank[c[i]]=t;
    }
    int j=1;
    while (j<=n)
    {
        for (int i=1;i<=n;i++) b[i]=0;
        for (int i=1;i<=n;i++) b[rank[i+j]]++;
        for (int i=1;i<=n;i++) b[i]+=b[i-1];
        for (int i=n;i>=1;i--) c[b[rank[i+j]]--]=i;
        for (int i=1;i<=n;i++) b[i]=0;
        for (int i=1;i<=n;i++) b[rank[i]]++;
        for (int i=1;i<=n;i++) b[i]+=b[i-1];
        for (int i=n;i>=1;i--) d[b[rank[c[i]]]--]=c[i];
        t=0;
        for (int i=1;i<=n;i++)
        {
            if (rank[d[i]]!=rank[d[i-1]]||rank[d[i]]==rank[d[i-1]]&&rank[d[i]+j]!=rank[d[i-1]+j]) t++;
            c[d[i]]=t;
        }
        for (int i=1;i<=n;i++) rank[i]=c[i];
        if (t==n) break;
        j<<=1;
    }
    for (int i=1;i<=n;i++) sa[rank[i]]=i;
}

void get_height(int n)
{
    int k=0;
    for (int i=1;i<=n;i++)
    {
        if (k) k--;
        int j=sa[rank[i]-1];
        while (i+k<=n&&j+k<=n&&s[i+k]==s[j+k]) k++;
        height[rank[i]]=k;
    }
}

void ins(int &d,int x,int w)
{
    d=++sz;
    if (x<0) return;
    if (w&bin[x]) ins(t[d].r,x-1,w);
    else ins(t[d].l,x-1,w);
}

int query(int d,int p,int x)
{
    if (x<0||!d||!p) return 0;
    if (t[d].l&&t[p].r||t[d].r&&t[p].l) return std::max(query(t[d].l,t[p].r,x-1),query(t[d].r,t[p].l,x-1))+bin[x];
    else return std::max(query(t[d].l,t[p].l,x-1),query(t[d].r,t[p].r,x-1));
}

int merge(int x,int y)
{
    if (!x||!y) return x+y;
    t[x].l=merge(t[x].l,t[y].l);
    t[x].r=merge(t[x].r,t[y].r);
    return x;
}

int main()
{
    bin[0]=1;
    for (int i=1;i<=18;i++) bin[i]=bin[i-1]*2;
    scanf("%d%s",&n,s+1);
    for (int i=1;i<=n;i++) scanf("%d",&w[i]);
    get_sa(n,30);
    get_height(n);
    for (int i=1;i<=n;i++) f[i]=i,ins(rt[i],18,w[sa[i]]);
    for (int i=2;i<=n;i++) vec[height[i]].push_back(i);
    int ans=0;
    for (int i=n;i>=0;i--)
        for (int j=0;j<vec[i].size();j++)
        {
            int x=find(vec[i][j]-1),y=find(vec[i][j]);
            ans=std::max(ans,i+query(rt[x],rt[y],18));
            f[x]=y;rt[y]=merge(rt[x],rt[y]);
        }
    printf("%d",ans);
    return 0;
}
发布了1110 篇原创文章 · 获赞 150 · 访问量 47万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览