LOJ#6198. 谢特【后缀自动机/数组 + Trie树查异或最大值 + Trie树合并】

题目描述:

在这里插入图片描述
n ≤ 1 0 5 , w i < n n\le10^5,w_i<n n105,wi<nLOJ题目链接

题目分析:

看到两个后缀的LCP就想到后缀自动机或者后缀数组

先从后缀自动机的思路入手,我们知道两个后缀的LCP就是它们在后缀自动机fail树上的LCA的len。
所以这道题就变成了:在fail树上,求 u u u点的不同子树内的 w i  xor  w j w_i~\text{xor} ~w_j wi xor wj的最大值。

需要Trie树合并,查询异或最大值。
合并的话,可以启发式合并(暴力插入),但是需要遍历子树内的点,查询也可以暴力遍历小的子树到大的子树里面查询,但是空间复杂度是 O ( n log ⁡ 2 n ) O(n\log^2n) O(nlog2n)的,可以改为树上DSU,空间复杂度降为 O ( n log ⁡ n ) O(n\log n) O(nlogn),时间复杂度 O ( n log ⁡ 2 n ) O(n\log^2n) O(nlog2n),比如这份提交

但是Trie树合并可以像线段树合并一样,并且因为不需要可持久化,所以合并的空间和时间复杂度都可以降为 O ( n log ⁡ n ) O(n\log n) O(nlogn)
查询的话也不需要遍历子树,因为是查两棵Trie树异或出的最大值,在两棵树同一层的点对 ( x , y ) (x,y) (x,y),对于 l c [ x ] lc[x] lc[x],它优先会选择 r c [ y ] rc[y] rc[y],如果没有 r c [ y ] rc[y] rc[y]则会选择 l c [ y ] lc[y] lc[y],也就是说 l c [ x ] lc[x] lc[x]所对应的第二棵树的节点是确定的,所以dfs求解的点对数就是小的Trie树里的点数。
这个写法可以参见我的提交

后缀数组的解法可以根据height值建出笛卡尔树,查询就暴力遍历小子树的点到大子树的Trie中查询。
但是此时的Trie树实际上是一个区间,于是可以用类似主席树的形式写可持久化Trie树然后做差,比如这份提交

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值