LibreOJ #2409.「THUPC 2017」小 L 的计算题 / Sum 生成函数

题意

给出 a 1 , . . . , a n a_1,...,a_n a1,...,an,对 1 ≤ i ≤ n 1\le i \le n 1in f i = ∑ k = 1 n a k i f_i=\sum_{k=1}^na_k^i fi=k=1naki
n ≤ 200000 n\le200000 n200000

分析

f i f_i fi O G F OGF OGF F ( x ) F(x) F(x),那么有 F ( x ) = ∑ i = 0 n f i x i F(x)=\sum_{i=0}^n f_ix^i F(x)=i=0nfixi
= ∑ i = 0 n x i ∑ k = 1 n a k i =\sum_{i=0}^n x^i\sum_{k=1}^na_k^i =i=0nxik=1naki
= ∑ k = 1 n 1 1 − a k x =\sum_{k=1}^n\frac{1}{1-a_kx} =k=1n1akx1
其实推到这里就可以多项式求逆+分治FFT搞了,只是往下推还有惊喜。
= ∑ k = 1 n 1 + a k x 1 − a k x =\sum_{k=1}^n1+\frac{a_kx}{1-a_kx} =k=1n1+1akxakx
= n − x ∑ k = 1 n − a k 1 − a k x =n-x\sum_{k=1}^n\frac{-a_k}{1-a_kx} =nxk=1n1akxak
= n − x ∑ i = 1 n [ l n ( 1 − a k x ) ] ′ =n-x\sum_{i=1}^n[ln(1-a_kx)]' =nxi=1n[ln(1akx)]
= n − x [ l n ∏ k = 1 n ( 1 − a k x ) ] ′ =n-x[ln\prod_{k=1}^n(1-a_kx)]' =nx[lnk=1n(1akx)]
直接分治FFT+多项式求ln就好了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

typedef long long LL;

const int N=200005;
const int MOD=998244353;

int n,rev[N*6],L,wn1[21][N*6],wn2[21][N*6],a[N],inv[N*6],ln[N*6],t1[N*6],t2[N*6],f[21][N*3];

void pre(int n)
{
	int lg=0;
	for (L=1;L<n;L<<=1,lg++);
	for (int i=0;i<L;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
}

int ksm(int x,int y)
{
	int ans=1;
	while (y)
	{
		if (y&1) ans=(LL)ans*x%MOD;
		x=(LL)x*x%MOD;y>>=1;
	}
	return ans;
}

void NTT(int *a,int f)
{
	for (int i=0;i<L;i++) if (i<rev[i]) std::swap(a[i],a[rev[i]]);
	for (int i=1,lg=0;i<L;i<<=1,lg++)
		for (int j=0;j<L;j+=(i<<1))
			for (int k=0;k<i;k++)
			{
				int u=a[j+k],v=(LL)a[j+k+i]*(f==1?wn1[lg][k]:wn2[lg][k])%MOD;
				a[j+k]=(u+v)%MOD;a[j+k+i]=(u+MOD-v)%MOD;
			}
	if (f==-1) for (int i=0,ny=ksm(L,MOD-2);i<L;i++) a[i]=(LL)a[i]*ny%MOD;
}

void get_inv(int *a,int n)
{
	if (n==1) {inv[0]=ksm(a[0],MOD-2);return;}
	get_inv(a,n/2);
	pre(n*2);
	for (int i=0;i<n;i++) t1[i]=a[i];
	for (int i=n;i<L;i++) t1[i]=0;
	for (int i=n/2;i<L;i++) inv[i]=0;
	NTT(t1,1);NTT(inv,1);
	for (int i=0;i<L;i++) inv[i]=(inv[i]*2%MOD+MOD-(LL)inv[i]*inv[i]%MOD*t1[i]%MOD)%MOD;
	NTT(inv,-1);
}

void get_ln(int *a,int n)
{
	get_inv(a,n);
	for (int i=0;i<n-1;i++) ln[i]=(LL)a[i+1]*(i+1)%MOD;
	ln[n-1]=0;
	pre(n*2);
	for (int i=n;i<L;i++) inv[i]=ln[i]=0;
	NTT(ln,1);NTT(inv,1);
	for (int i=0;i<L;i++) ln[i]=(LL)ln[i]*inv[i]%MOD;
	NTT(ln,-1);
	for (int i=n-1;i>=1;i--) ln[i]=(LL)ln[i-1]*ksm(i,MOD-2)%MOD;
	ln[0]=0;
}

void solve(int l,int r,int d)
{
	if (l==r) {f[d][0]=1;f[d][1]=MOD-a[l];return;}
	int mid=(l+r)/2;
	solve(l,mid,d+1);
	for (int i=0;i<=mid-l+1;i++) f[d][i]=f[d+1][i];
	solve(mid+1,r,d+1);
	pre(r-l+10);
	for (int i=0;i<L;i++) t1[i]=t2[i]=0;
	for (int i=0;i<=mid-l+1;i++) t1[i]=f[d][i];
	for (int i=0;i<=r-mid;i++) t2[i]=f[d+1][i];
	NTT(t1,1);NTT(t2,1);
	for (int i=0;i<L;i++) t1[i]=(LL)t1[i]*t2[i]%MOD;
	NTT(t1,-1);
	for (int i=0;i<=r-l+1;i++) f[d][i]=t1[i];
}

int main()
{
	for (int i=0;i<=19;i++)
	{
		int w1=ksm(3,(MOD-1)/(1<<(i+1))),w2=ksm(3,MOD-1-(MOD-1)/(1<<(i+1)));
		wn1[i][0]=wn2[i][0]=1;
		for (int j=1;j<(1<<i);j++) wn1[i][j]=(LL)wn1[i][j-1]*w1%MOD,wn2[i][j]=(LL)wn2[i][j-1]*w2%MOD;
	}
	int T;scanf("%d",&T);
	while (T--)
	{
		scanf("%d",&n);
		for (int i=1;i<=n;i++) scanf("%d",&a[i]);
		solve(1,n,0);
		int len=1;
		for (;len<=n;len<<=1);
		for (int i=n+1;i<len;i++) f[0][i]=0;
		get_ln(f[0],len);
		int ans=0;
		for (int i=1;i<=n;i++) ans^=(LL)(MOD-ln[i])*i%MOD;
		printf("%d\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值