Spark 教程 - Spark调度系统

Spark 的调度系统是其高效执行大规模数据处理任务的关键组成部分。它负责管理和优化任务的分配,确保资源的有效利用。以下是关于 Spark 调度系统的几个核心概念和机制:

1. DAGScheduler(有向无环图调度器)

DAGScheduler 负责将用户提交的 Spark 作业转化为一系列阶段(Stage),这些阶段形成了一个有向无环图(DAG)。每个阶段可以进一步分解为多个任务(Task),这些任务将在各个工作节点上并行执行。DAGScheduler 的主要职责包括:

  • 作业划分:将复杂的 Spark 作业拆分为多个任务组成的阶段,通常在 shuffle 操作处划分阶段。
  • 任务调度:决定各个阶段的执行顺序,考虑依赖关系和数据局部性。
  • 资源申请:向底层调度器(如 TaskScheduler)请求执行任务所需的资源。

2. TaskScheduler(任务调度器)

TaskScheduler 负责接收来自 DAGScheduler 的任务,并将这些任务分配给集群中的 Executor 执行。它主要完成以下工作:

  • 任务分配:根据 Executor 的可用资源和数据本地性原则,将任务分配给合适的 Executor。
  • 任务监控:跟踪任务的执行状态,如任务完成、失败或被取消,并根据需要重新安排失败的任务。
  • 资源管理:与资源管理器(如 YARN 或 Mesos)交互,获取和释放资源。

3. Executor(执行器)

Executor 是 Spark 应用在工作节点上启动的进程,负责实际执行任务。每个 Executor 可以同时运行多个任务,并且有自己的内存管理机制来存储数据(如 RDD 的分区)。Executor 接收来自 TaskScheduler 的任务,执行计算并将结果返回给 Driver。

4. 任务与阶段的调度策略

  • 任务调度策略:Spark 支持 FIFO(先进先出)、FAIR(公平)等多种调度模式,可以根据应用场景选择合适的调度策略。
  • 数据局部性:Spark 调度器会优先尝试将任务分配到数据所在的节点,以减少数据在网络中的传输,提高执行效率。局部性级别包括 PROCESS_LOCAL、NODE_LOCAL、NO_PREF、RACK_LOCAL 和 ANY,从最优到最劣。

5. 动态资源分配

Spark 支持动态资源分配,允许应用程序根据当前工作负载动态请求和释放资源。当作业需要更多资源时,可以向资源管理器请求额外的 Executor;当作业接近完成,空闲的 Executor 将被回收,资源得以高效利用。

综上所述,Spark 的调度系统通过高度优化的阶段划分、智能的任务分配策略、细致的数据局部性考虑以及动态资源管理,实现了高效、灵活的大数据处理能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值