笔记-groupby函数使用

1处是最后要输出的数据

2处是要分组的数据 ,可以有多个

3处是一种计算方式,有多种

使用apply函数与groupby函数结合,输出1处的数据 

 下面进行实例演示:

import pandas as pd 

df = pd.read_excel('D:/python/test/test3.xlsx')
print(df)

根据性别分组,获得tips的平均值

result1 = df['tips'].groupby(df['sex']).mean()
print(result1)

 

 根据性别和是否抽烟分组,获得tips的最大值

result2 = df['tips'].groupby([df['sex'],df['smoker']]).max()
print(result2)

 还可以将tips放在后面,效果是一样的

result2 = df['tips'].groupby([df['sex'],df['smoker']]).max()
result3 = df.groupby([df['sex'],df['smoker']])['tips'].max()
print(result2)
print(result3)

将df修改使其存在重复的部分,与apply函数结合,获得重复数据的index数据

 

result4 = df.groupby(df.columns.tolist()).apply(lambda x: list(x.index))
print(result4)

 

将其转化为list:

result4 = df.groupby(df.columns.tolist()).apply(lambda x: list(x.index)).tolist()
print(result4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值