选择排序(图解)

选择排序

选择排序是一种简单直观的排序算法,它的工作原理是每一次从待排序的数据元素中选出最小(最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到全部待排序的数据元素排完。选择排序是不稳定的排序方法。

选择排序的方法主要有两种,分别是简单选择排序以及堆排序,它们都是从待排序的数据元素中选择合适的元素放到合适的位置来进行排序。

1、简单选择排序

基本思想:每一趟从待排序的数据元素中选择最小(或最大)的一个元素作为首元素,直到所有元素排完为止。

算法实现:每一趟通过不断地比较交换来使得首元素为当前最小,交换是一个比较耗时间的操作,我们可以通过设置一个值来记录较小元素的下标,循环结束后存储的就是当前最小元素的下标,这时再进行交换就可以了。

对于数组一个无序数组{4,6,8,5,9}来说,我们以min来记录较小元素的小标,i和j结合来遍历数组,初始的时候min和i都指向数组的首元素,j指向下一个元素,j开始从右向左进行遍历数组元素,若有元素比min元素更小则进行交换,然后min为更小元素的小标,i再向右走,这样循环到i走到最后一个元素就完成了排序,过程如下图所示:

代码实现:

void Swap(int *arr, int a, int b)
{
	int tmp = arr[a];
	arr[a] = arr[b];
	arr[b] = tmp;
}

void SimpleSelectSort(int *arr,int len)
{
	int min;
	for (int i = 0;i < len - 1;i++)
	{
		min = i;
		for (int j = i + 1;j < len;j++)
		{
			if (arr[min] > arr[j])
			{
				min = j;
			}
		}
		if (min != i)
		{
			Swap(arr,min,i);
		}
	}
}

2、堆排序

思想准备:什么是堆?什么是大根堆和小根堆?

堆是具有以下性质的完全二叉树:父节点的数据大于子节点的数据称之为大根堆,可以用来做升序;父节点的数据小于子节点的数据称之为小根堆,可以用来做降序。对于上面的数组{4,6,8,5,9}来说可以构成如下的树:

将它构成大根堆或者小根堆则如下图所示:

基本思想:将待排序序列构成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其于末尾元素进行交换,此时末尾就为最大值,然后将剩余n-1个元素重新构成一个堆,这样就会得到n个元素的次小值,如此反复执行就能得到一个有序序列。

算法实现:步骤一,构造初始堆。将给定的无序序列构造成一个大顶堆

 (1)初始无序序列结构如下:

 (2)从最后一个非叶子节点开始,从左到右,从下到上进行调整。(第一个非叶子节点length/2 - 1 = 5/2 - 1 = 1,即下面的6节点)

  (3)找到第二个非叶子节点4,因为{4,9,8}中9最大,则4和9交换

  (4)这时的交换使得{4,5,6}的结构发生变化,继续调整,{4,5,6}中6最大,交换4和6

这样就将无序序列构造成了一个大根堆。

步骤二:将堆顶元素与数组的末尾元素交换,使得末尾元素最大,然后继续调整堆结构,再将堆顶元素与末尾元素交换,得到第二大元素,如此反复交换、调整就可以得到一个有序序列。

  (1)将堆顶元素9与末尾元素4交换

  (2)调整堆结构,让它继续满足堆定义

 

  (3)将堆顶元素8与末尾元素5交换,得到第二大元素8

   (4)将堆顶元素5与末尾元素4交换

  (5)最后调整堆结构将5和6交换则得到了有序序列

代码实现

void AdjustHeap(int *arr, int i, int length)
{
	int tmp = arr[i];
	for (int k = 2 * i + 1; k < length; k = 2 * k + 1)
	{
		if (k != length - 1 && arr[k] < arr[k + 1])
		{
			k++;
		}
		if (arr[k] > tmp)
		{
			arr[i] = arr[k];
			i = k;
		}
		else
		{
			break;
		}
	}
	arr[i] = tmp;
}

void HeapSort(int *arr,int length)
{
	if (length < 2)
	{
		cout << "sort error";
		return;
	}
	for (int i = length / 2 - 1;i >= 0 ;i--)
	{
		AdjustHeap(arr,i,length);
	}
	for (int j = length - 1;j > 0;j--)
	{
		Swap(arr,0,j);
		AdjustHeap(arr,0,j);
	}
}

 

 

### 回答1: 可以的,下面是Java中选择排序图解说明: 选择排序是一种简单的排序算法,其基本思想是找到最小值,并将其放在序列的起始位置,然后重复这个过程直到整个序列都有序为止。 以下是Java中选择排序的实现过程及图解说明: ``` public static void selectionSort(int[] arr) { int n = arr.length; for (int i = 0; i < n - 1; i++) { int minIndex = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[minIndex]) { minIndex = j; } } int temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } } ``` 首先,找到数组中最小的元素,然后将它和数组的第一个元素交换位置。接着,在剩下的元素中找到最小的元素,将它和数组的第二个元素交换位置。不断重复这个过程,直到整个数组有序。 例如,假设有一个未排序的数组arr=[5, 2, 4, 6, 1, 3],其选择排序过程如下所示: 1. 第一次遍历,找到最小元素1,并将其与第一个元素5交换位置,数组变为[1, 2, 4, 6, 5, 3]。 2. 第二次遍历,从第二个元素2开始,找到剩余元素中的最小元素2,并将其与第二个元素2交换位置,数组变为[1, 2, 4, 6, 5, 3]。 3. 第三次遍历,从第三个元素4开始,找到剩余元素中的最小元素3,并将其与第三个元素4交换位置,数组变为[1, 2, 3, 6, 5, 4]。 4. 以此类推,直到整个数组有序。 这就是选择排序的基本实现过程,它可以确保数组中的元素按升序排列。 ### 回答2: 选择排序是一种简单但低效的排序算法,其基本思想是每次从待排序的元素中选出最小(或最大)的一个元素,依次放置到已排序的序列的末尾,直到所有元素都排好序为止。下面是用图解的方式说明选择排序的过程。 假设有一个待排序的数组arr,初始状态下数组为[5,4,3,2,1]。 首先,我们从数组中找到最小的元素,在这里是1,并将其与第一个元素交换位置,此时数组变为[1,4,3,2,5]。 然后,从剩下的四个元素中找到最小的元素,即2,将其与第二个元素交换位置,数组变为[1,2,3,4,5]。 接着,从剩下的三个元素中找到最小的元素,即3,将其与第三个元素交换位置,数组变为[1,2,3,4,5]。 继续,找到最小的元素4,将其与第四个元素交换位置,数组不变。 最后,数组中只剩下一个元素5,已经排好序。 通过图解可以清楚地看到选择排序的过程。每次在剩下的元素中找到最小的元素,并把它放在正确的位置。这个过程是逐渐地形成有序部分的过程,直到数组全部有序。 需要注意的是,选择排序的时间复杂度为O(n^2),其中n为数组的长度。由于每次只找到一个最小元素,并将其放在正确的位置,所以即便数组已经有序,算法也需要进行完整的比较和交换的过程。因此,相比于其他更高效的排序算法选择排序并不是一个性能很好的选择。 ### 回答3: 选择排序是一种简单直观的排序算法。它的核心思想是在未排序序列中找到最小(或最大)的元素,将其放到已排序序列的末尾。 在图解选择排序的过程中,我们假设有一个待排序数组{64, 25, 12, 22, 11}: 1. 首先,从待排序序列中找到最小的元素,即11。 2. 将最小元素与待排序序列的第一个元素进行交换,此时得到的序列是{11, 25, 12, 22, 64}。 3. 接下来,在剩余的序列中找到最小的元素,即12。 4. 将最小元素与待排序序列的第二个元素进行交换,此时得到的序列是{11, 12, 25, 22, 64}。 5. 继续按照上述步骤,在剩余的序列中找到最小的元素,并依次将其与待排序序列中的元素进行交换,得到最终排序后的序列{11, 12, 22, 25, 64}。 选择排序的过程可以用下图表示: 初始状态:[64, 25, 12, 22, 11] 第一次选择:[11, 25, 12, 22, 64] 第二次选择:[11, 12, 25, 22, 64] 第三次选择:[11, 12, 22, 25, 64] 第四次选择:[11, 12, 22, 25, 64] 通过不断选择未排序序列中的最小(或最大)元素并交换,就可以逐步将数组从小到大(或从大到小)进行排序。 选择排序的时间复杂度为O(n^2),其中n为数组长度。尽管选择排序不是最高效的排序算法,但由于其实现简单,对于小规模数组仍然是一种不错的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值