项目国际化I18N多语言切换

作为国际化的门户网站,支持多种不同的语言,以方便不同国家,不同语种的用户访问尤其重要,目前通过Vue I18n已实现中英文自由切换。

一、了解I18N

1、什么是I18N

i18n(其来源是英文单词 internationalization的首末字符i和n,18为中间的字符数)是“国际化”的简称。在资讯领域,国际化(i18n)指让产品(出版物,软件,硬件等)无需做大的改变就能够适应不同的语言和地区的需要。对程序来说,在不修改内部代码的情况下,能根据不同语言及地区显示相应的界面。

2、为什么要使用I18N

说到这不得不提及前端国际化,即:应用要服务于不同的地区的用户,所以应用不能单一语言;应用要能让不同地区的人无障碍使用就需要实现国际化。

在全球化的时代,国际化尤为重要,因为产品的潜在用户可能来自世界的各个角落

目前在各大商城项目中,对于国际化语言的需求越来越高了,其中最多的就是vue项目使用i18n插件实现多语言切换功能

Vue I18n 是 Vue.js 的国际化插件。它可以轻松地将一些本地化功能集成到你的 Vue.js 应用程序中。官网:介绍 | Vue I18n

二、使用

1、vue 安装国际化i18n

npm install vue-i18n --save

cnpm install vue-i18n --save (淘宝镜像安装)

2、创建语言包文件

①:创建en.js文件:包含所有要翻译的文本对应的英文键值对

export const language = {
  // 首页
  index: "index",
  // 大会活动
  conventionActivities: "Convention Activities",
  // 展览展示
  exhibitions: "Exhibitions",
  // 大会服务
  conventionServices: "Convention Services",
  // 关于
  about: "about",
  // 重大活动
  majorEvents: "Major Events",
	。。。。。。
}

②:创建zh.js文件:包含所有要翻译的文本对应的中文键值对

export const language = {
	index: "首页",
	conventionActivities: "大会活动",
	exhibitions: "展览展示",
	conventionServices: "大会服务",
	about: "关于",
	majorEvents: "重大活动",
	。。。。。。
}

3、在main.js中引入并使用

//引入中英文切换插件vue-i18n
import VueI18n from "vue-i18n";
// 应用
Vue.use(VueI18n); 
const i18n = new VueI18n({
	locale: "zh-CN", // 语言标识
	messages: {
		"zh-CN": require("./lang/zh"), // 通过require引入中文语言包
		"en-US": require("./lang/en"), // 通过require引入英文语言包
	},
});
// 注意还需将i18n注入到vue实例中
new Vue({
	router,
	store,
	i18n,
	render: (h) => h(App),
}).$mount("#app");

4、在组件中使用

// 标签内使用
<li>{{$t("language.brilliantMoments") }}</li>

// 标签属性中使用
<FormItem :label="$t('message')"></FormItem>

// js 中使用
this.$t('message')

5、在页面中切换语言

通过事件触发,点击切换语言,控制locale的值,调用对应的语言包,这里是通过 el-selct 选择对应语言来进行切换,点击对应选项后,通过更改this.$i18n.locale来切换当前语言,并将该语言存储在Vuex中

<el-select
	v-model="language"
	placeholder="请选择"
	@change="languageSelect"
	:popper-append-to-body="false"
	>
	<el-option
		v-for="item in options"
		:key="item.value"
		:label="item.label"
		:value="item.value"
		>
	</el-option>
</el-select>
export default {
	name: "NavBar",
	data() {
		return {
			options: [
				{
					value: "zh-CN",
					label: "中",
				},
				{
					value: "en-US",
					label: "EN",
				},
			],
		}
	}
methods: {
    languageSelect(val) {
        this.$nextTick(() => {
            this.$i18n.locale = val; //设置语言
            this.$store.commit("SET_LANG",val);
        });
    },
}

6、使用过程中注意事项

①、在js中使用时若将表达式写在data中,并不能响应变化,从而导致切换语言不生效,建议将表达式写到计算属性中,如:

computed: {
    titleMain() {
        return this.$t("language.conventionActivities");
    },
    // 通过computed获取vuex中的language状态,这样其他地方修改语言后这边可以监测到,并提供使用
    lang() {
        return this.$store.state.lang;
    },
}

②、做好缓存和本地存储,不然页面刷新时还是会使用默认语言,上述步骤3,5中需做如下更改

步骤5中切换语言时:

在vuex中

步骤3中在mian.js引入时:

三、总结

上述只是我在项目中使用i18n多语言切换开发中的使用过程和注意事项,i18n的功能不止于此,还有如:格式化,组件插值,复数能实用功能,官网中都有详细的介绍和示例,大家感兴趣可以跟着官网例子做一遍。

非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我的2009

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值