算法强化 —— 最短路径

本文介绍了最短路径问题,详细讲解了Dijkstra算法的步骤和时间复杂度,并探讨了LeetCode 743题目的应用场景。接着,解释了Bellman-Ford算法,用于解决带负权边的最短路径问题,同时阐述了其在检测负环路中的应用。
摘要由CSDN通过智能技术生成

最短路径

Dijkstra算法
Bellman-Ford算法

Dijkstra

步骤
1.第一个核心步骤:找到当前未处理过的顶点中Distance最小的点V,(由于起点到起点的消耗为0,所以算法开始时V必定代表起点)
2.第二个核心步骤:若V有邻居,则计算经过V的情况下起点到达各邻居的消耗Distance,并选择是否更新V邻居的Distance值。若没有邻居则对该点的处理结束
3.重复以上两个核心步骤,直到满足算法终止的条件:有向图中所有的点都被处理过。
时间复杂度
设有向图中,共有V个定点,E条边。
传统Dijkstra算法中主要操作有:
1.每次从确定节点中寻找Distance最小节点,需要O(1+2+3+…+(V-1)) = O(V^2)
2.更新邻居的Distance,需要O(E)
所以总的时间复杂度为O(V^2+E),因为O(E) <–> O(V2),所以时间复杂度为O(V2)

LeetCode 743 网络延迟时间

有 N 个网络节点,标记为 1 到 N。
给定一个列表 times,表示信号经过有向边的传递时间。 times[i] = (u, v, w),其中 u 是源节点,v 是目标节点, w 是一个信号从源节点传递到目标节点的时间。
现在,我们向当前的节点 K 发送了一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1。
注意:
N 的范围在 [1, 100] 之间。
K 的范围在 [1, N] 之间。
times 的长度在 [1, 6000] 之间。
所有的边 times[i] = (u, v, w) 都有 1 <= u, v <= N 且 0 <= w <= 100。

单源最短路径问题



class Solution():
    def networkDelayTime(self,times,N,K):
        D = [float('inf')]*(N+1) # 除起点外初始化正无穷
        graph = {
   }
        for u,v,w in times:
            graph[u] = graph
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值