正交矩阵的特性 A乘A的转置结果等于 单位矩阵,但是这样去判断A是否为正交矩阵计算太麻烦
以下方法可以快速求解是否为正交矩阵
1)矩阵各列之间 内积为0 ,即每列之间的对应元素 相乘并求和
2)每列 矢量 内部元素 平方和 为 1
举个经典的例子:
这就是一个正交矩阵
因为每一列之间内积为0,每一列自身平方和为1
而这个矩阵就不是一个正交矩阵,虽然有各列矢量内积为0的特性,但是每个矢量自身平方却不等于1,故这不是一个正交矩阵
正交矩阵的特性 A乘A的转置结果等于 单位矩阵,但是这样去判断A是否为正交矩阵计算太麻烦
以下方法可以快速求解是否为正交矩阵
1)矩阵各列之间 内积为0 ,即每列之间的对应元素 相乘并求和
2)每列 矢量 内部元素 平方和 为 1
举个经典的例子:
这就是一个正交矩阵
因为每一列之间内积为0,每一列自身平方和为1
而这个矩阵就不是一个正交矩阵,虽然有各列矢量内积为0的特性,但是每个矢量自身平方却不等于1,故这不是一个正交矩阵