比原生Transformer快的LMDeploy

创建conda环境

conda create lmdeploy

conda activate lmdeploy

安装依赖包(注:下对应的版本要不然容易报错)

pip install pytorch==2.1.2

pip install lmdeploy[all]==0.3.0

下载模型

通过Git协议下载模型。首先安装git-lfs组件 此处使用的root权限

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash
apt update
apt install git-lfs   
git lfs install  --system

安装好git-lfs组件后,由OpenXLab平台下载InternLM2-Chat-1.8B模型:

git clone https://code.openxlab.org.cn/OpenLMLab/internlm2-chat-1.8b.git

把模型放到对应的路径下如

mv /root/internlm2-chat-1.8b /root/internlm2-chat-1_8b

使用LMDeploy与模型对话

执行如下命令运行下载的1.8B模型

lmdeploy chat /root/internlm2-chat-1_8b

就可以与InternLM2-Chat-1.8B大模型对话了。比如输入“请给我讲一个小故事吧”,然后按两下回车键

也可以启动API服务器

lmdeploy serve api_server \
    /root/internlm2-chat-1_8b \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

其中,model-format、quant-policy这些参数是与第三章中量化推理模型一致的;server-name和server-port表示API服务器的服务IP与服务端口;tp参数表示并行数量(GPU数量)。

启动客户端调用

lmdeploy serve api_client http://localhost:23333

网页客户端连接API服务器

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

打开浏览器,访问地址http://127.0.0.1:6006

以下是一个简单的原生Transformer代码示例,使用PyTorch实现: ```python import torch import torch.nn as nn import torch.nn.functional as F class Transformer(nn.Module): def __init__(self, src_vocab_size, tgt_vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1): super(Transformer, self).__init__() self.d_model = d_model self.embedding_src = nn.Embedding(src_vocab_size, d_model) self.embedding_tgt = nn.Embedding(tgt_vocab_size, d_model) self.pos_encoder = PositionalEncoding(d_model, dropout) self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout) self.fc = nn.Linear(d_model, tgt_vocab_size) self.softmax = nn.Softmax(dim=-1) def forward(self, src, tgt): src = self.embedding_src(src) * math.sqrt(self.d_model) src = self.pos_encoder(src) tgt = self.embedding_tgt(tgt) * math.sqrt(self.d_model) tgt = self.pos_encoder(tgt) output = self.transformer(src, tgt) output = self.fc(output) output = self.softmax(output) return output class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) ``` 这是一个基本的Transformer模型,包含一个由嵌入层和位置编码层组成的编码器和解码器,以及一个标准的Transformer层。在正向传递中,输入经过嵌入和位置编码处理后,被送入Transformer层进行处理,最后通过全连接层和Softmax层输出结果。在位置编码层中,我们使用了一个可学习的嵌入向量和一个固定的位置编码矩阵,以将位置信息融入到输入中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值