- 博客(40)
- 收藏
- 关注
原创 OpenCompass 大模型评测平台C-Eval 基准任务评估实战
OpenCompass,一个由上海人工智能实验室开发的大模型开源评测体系,提供了一套全面、公正、可复现的评测方案,帮助研究人员和开发者深入了解和优化他们的模型。
2024-06-08 14:50:43 938
原创 根据AgentLego 搭建多工具智能体
本操作文档旨在指导用户如何使用 AgentLego 进行智能体构建。AgentLego 是一个开源的智能体算法库,它提供了一系列工具和接口,使开发者能够轻松地构建和部署智能体。
2024-06-07 11:28:33 787
原创 Lagent轻量级智能体应用搭建
Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。本文分别用已有工具和自选工具,用Lagent框架搭建一个web demo 。
2024-06-05 22:14:18 1195
原创 LMDeploy量化部署LLM实战
LMDeploy 是由MMDeploy和MMRazor团队联合开发,是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。本次实战,采用LMDeploy方案进行模型的推理、量化和部署,让大家感受下该解决方案的速度和效率的提升。
2024-06-04 16:14:40 825
原创 XTuner 微调个人小助手认知实战
本次实践是在InternStudio平台上,运用XTuner工具来微调InterLM2-Chat-1.8B模型,实现模型身份认证问题的解决。具体来说,如下图,让模型在回答自身身份问题的时候,加入你想要的信息。
2024-06-02 11:51:28 980
原创 部署应用茴香豆RAG助手
RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次选用的茴香豆应用,就应用了 RAG 技术,可以快速、高效的搭建自己的知识领域助手。
2024-05-30 11:17:28 1094
原创 基于 LLM 的群聊知识助手:茴香豆简介
茴香豆是一个基于大型语言模型(LLM)的群聊知识助手,旨在为用户提供智能化的对话体验和问题解答。它通过精心设计的三阶段处理流程(预处理、拒答、响应)来应对群聊场景的复杂性,确保既能提供有用的信息,又不会导致消息泛滥。
2024-05-29 09:44:57 695
原创 实践部署 浦语·灵笔2 模型,写作图文并茂的文章
浦语·灵笔2是基于书生·浦语2大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,本文在开发机上面部署实践
2024-05-28 22:26:59 769
原创 使用 Lagent 运行 InternLM2-Chat-7B 模型
Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。
2024-05-28 15:26:21 612
原创 部署八戒-Chat-1.8B 模型
运用模型进行微调训练的优秀成果。其中,是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为子项目之一,能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。
2024-05-28 10:41:05 1164
原创 解析Transformer模型微调:算法、工程实践与高效数据策略
本文分析了Transformer架构及其在NLP中的应用,包括BERT的双向理解、GPT的文本生成和标准Transformer的序列转换能力。我们讨论了这些模型的算法特点、工程实现挑战和针对性微调数据集构建的策略。强调了微调时数据质量、多样性及平衡的重要性,并通过案例展示了实际应用中的数据集准备。文章指出,有效的微调关键在于精心设计的数据集,并展望了自动化增强和质量评估的未来趋势。
2024-01-21 12:58:11 1579 1
原创 大语言模型微调技术要点之硬件准备和数据准备
本文为大语言模型微调所需知识点的概览,第一部分先介绍大语言模型中微调的硬件准备和数据准备的相关知识点和经验总结
2024-01-15 12:11:29 1505
原创 详解Alpaca指令集
alpaca项目领域gpt生成高质量指令数据集,为模型的成功奠定了基础,本文详细讲解生成数据集的提示词和数据集的格式特点,以及评价等内容。
2023-12-22 13:10:09 2957
原创 LoRa微调的背后原理:参数的内在维度
我们实证显示,常见的预训练模型具有非常低的内在维度;此外,我们实证显示,预训练隐含地最小化了内在维度,而且可能出人意料的是,更大的模型在固定次数的预训练更新后,趋向于具有更低的内在维度,至少部分地解释了它们极高的有效性。最后,通过将内在维度与低维任务表示和压缩基础泛化界限联系起来,论文提供了基于内在维度的泛化界限,这个界限与模型的全参数数目无关,这进一步强化了内在维度在理解预训练语言模型中的重要性。例如,一个点的维度是0,一条直线的维度是1,一个平面的维度是2,立体空间的维度是3,以此类推。
2023-11-14 11:25:26 1078 2
原创 Tansformer中的层归一化(Layer Normalization)
从内部协同变量偏移的模型训练问题出发,简单分析了层归一化的原理、应用及代码实现
2023-10-21 14:17:35 850
原创 恒等映射与残差网络
这样,我们实际上是在训练网络学习F(x) = H(x) - x,同时确保了H(x) = F(x) + x。这里的 x 是输入,F(x) 是一个由两个权重层(也就是全连接层或卷积层)和一个激活函数(例如ReLU)构成的函数,F(x) + x 是添加了输入 x 后的输出,然后再通过一个激活函数,如ReLU。然而,在ResNet中,我们将这个目标稍微改变一下,使每一层去学习一个残差函数F(x) = H(x) - x,这个残差函数表示的是原始输入x与我们希望得到的输出H(x)之间的差异,或者叫做"残差"。
2023-10-20 11:24:05 2212 1
原创 基础篇4:深入理解 Transformer 的前馈层
本教程将详细解释Transformer中的前馈层的工作原理,并通过一个真实世界的例子来展示它们如何在实践中应用。
2023-10-12 16:11:48 2053
原创 基础篇3:深入理解 Transformer
Transformer的关键特性之一就是自注意力机制,它让模型能够关注到输入序列中的重要部分。本教程将详细解释Transformer和自注意力机制的工作原理,并通过具体的例子说明如何进行应用。
2023-10-12 13:38:23 173
原创 3.基于大型语言模型和向量数据库的销售机器人实战
在这个教程中,我们将使用OpenAI的大型语言模型和Facebook AI的FAISS向量数据库创建一个销售机器人。这个机器人可以理解和回答基于文档内容的问题。基于向量数据库和大型语言模型(Large Language Model,LLM)开发问答机器人的技术原理可以分为以下几个步骤:这是整个流程的第一步,包括从各种来源(如本地文件、URLs、PDFs等)加载文档。这些文档的内容将用于训练和查询机器人。在这个步骤中,每个文档都会被分割成多个 "splits" 或段落。
2023-10-11 21:34:08 150
原创 2.基于向量数据库的问答机器人
在这一节课中,我们将介绍如何构建一个基于向量数据库的问答机器人。我们将使用OpenAI的嵌入技术以及Facebook的FAISS库来实现。这个问答机器人可以读取.docx文件,将其中的文本加载到向量数据库中,并能够查询这个数据库以找到与特定查询语句相关的文档。
2023-10-11 21:32:21 272
原创 1.基于LLM和向量数据库的智能对话系统设计与实现
在该项目中,实现以下几个模块:数据处理模块,向量数据库模块,意图识别模块,和提示优化模块。以下是一个大致的项目架构和代码示例。请注意,这只是一个示例,实际代码可能需要根据你的具体需求进行修改。
2023-10-11 21:29:35 289
原创 3.3模型开发
在本课程中,我们将探索如何使用Python和scikit-learn库在数字字体图片数据集上实现和评估K-最近邻(KNN)分类算法。我们希望通过这个课程,你能够理解分类算法的基本概念和原理,并通过实战项目提高你的数据处理和机器学习技能。
2023-10-01 09:36:49 43
原创 3.2数据处理
在机器学习的许多应用中,我们需要处理图像数据。例如,在图像分类、物体检测或者人脸识别等任务中,我们需要将图片转换为可以供机器学习模型使用的形式。这份教学文档将教你如何使用Python将图像数据转换成sklearn机器学习模型可以处理的形式。
2023-10-01 09:32:12 49
原创 3.1数据标注
本课程将指导你如何将WOFF字体文件转换为图像,并进行数据标注。首先,你将学习如何导入必要的模块,定义转换函数,并将字符渲染为图像。接着,你将使用labelme工具进行手动标注,包括安装labelme, 加载图片,创建多边形,标注车牌,以及保存标注。最后,你将学习如何调用API进行自动标注,包括用Postman测试API,以及在Python程序中实现车牌识别与自动标注。这个课程适合数据科学家,机器学习工程师,以及对数据标注感兴趣的初学者。
2023-09-30 17:39:43 142
原创 第三章:AI模型开发
在本章中,我们将深入探讨AI模型开发的全过程,从数据标注开始,到数据处理,再到模型开发,我们将详细探讨每一个步骤。本章的重点是如何将WOFF字体文件转换为图像并进行标注,然后训练机器学习模型。3.1数据标注在这个部分,我们将开始我们的任务——将WOFF字体文件转换为图像。我们将详细介绍如何进行此操作,并讨论其在AI模型开发中的重要性。我们也将详细讨论标注的重要性,并提供有关如何进行高质量标注的实用指南。3.2数据处理一旦我们的数据被标注,我们就可以开始进行数据处理了。我们将讨论不
2023-09-30 17:26:38 121
原创 第二章:数据采集
在接下来的学习中,我们将深入研究Web端和App端的网络爬虫技术。我们会学习如何编写网络爬虫来获取和处理来自这些终端的数据,如何优雅地处理可能遇到的问题,以及如何在尊重隐私和遵守法律的前提下进行数据采集。具体在本章中,我们将学习如何使用Windows采集工具(后裔采集器)来进行数据采集,以训练数字密文识别模型。我们将通过APP和自动化采集方式采集猫眼电影网站上的关于电影评分和电影票房的数字密文,为后续的模型训练打下基础。本章将重点介绍如何采集数据以及处理采集到的数字密文。
2023-09-28 10:08:30 1050
原创 1.2 ChatGPT的提示词工程
ChatGPT 上线至今已经有一段时间了,但是不少人还没真正掌握它的使用技巧。其实,ChatGPT 的难点,在于 Prompt(提示词)的编写,OpenAI 创始人在今年 2 月时,在 Twitter 上说:「能够出色编写 Prompt 跟聊天机器人对话,是一项能令人惊艳的高杠杆技能」。目前你在网上看到的所有 AI 助理、智能翻译、角色扮演,本质上还是通过编写 Prompt 来实现。
2023-09-28 09:52:25 208
原创 第一章:ChatGPT基本原理及开发应用
在本章中,我们将详细讨论ChatGPT的工作原理,训练过程,优点,以及其在AI项目开发中的应用。我们也将通过实例,演示如何使用ChatGPT进行代码写作,问题查找,错误修正等任务。
2023-09-28 09:37:04 436
原创 AI实战:基于ChatGPT的验证码与文本解密一体化开发
欢迎加入我们的“AI实战:基于ChatGPT的验证码与文本解密一体化开发”课程。这门课程专为希望成为AI开发工程师的学生和专业人士设计。我们的课程有许多特点和亮点,这些亮点将帮助您更好地理解、学习和应用AI和大语言模型,并在企业环境中实现有效的应用开发。适用于人工智能专业三年级企业级应用项目开发课程,80课时,5学分。进阶选修课32课时,面向高职所有专业和年级的学生。
2023-09-28 09:33:13 108
原创 调用openai 的文生图功能,用中文制作图片
通过今天学习 OpenAI API,你将能够访问 OpenAI 的强大模型,用于创建和编辑原始图像的 DALL-E。在我们开始使用 OpenAI API 之前,我们需要登录我们的 OpenAI 帐户并生成我们的API 密钥。这里要注意,OpenAI 不会在生成 API 密钥后再次显示它,因此请及时复制你的 API 密钥并保存。我们可以使用 DALL-E 模型生成图像,我们使用图像生成endpoint并提供文本指令。注意在openai.api_key ="",的里面放入自己的openai 密钥。
2023-03-22 10:39:41 2256
原创 python调用百度地图搜索POI数据
#行政区域检索 https://api.map.baidu.com/place/v2/search?query={}®ion=北京&output=json&ak={} //GET请求。
2022-10-24 21:54:58 422
多线程xpath方法爬取历年电影票房排名(1996-2022)
2022-11-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人