拉格朗日乘子法

定义1:

\left(x_0,y_0 \right )为函数z=f\left(x,y \right )在条件\varphi\left(x,y \right )=0下的条件极值点,f\left(x,y \right )\varphi\left(x,y \right )有连续的偏导数,且\varphi\left(x_0,y_0 \right ) \neq 0,则存在$$ {\lambda _0} \in R,使F\left(x,y,\lambda \right )=f\left(x,y \right )+\lambda\varphi \left(x,y \right )驻点\left(x_0,y_0)(平稳点、稳定点或临界点,该点函数一阶导数为0)

                                                   $$ \left\{ {\begin{array}{*{20}{l}} {​{F_x}\left( {​{x_0},{y_0},{\lambda _0}} \right) = {f_x}\left( {​{x_0},{y_0}} \right) + {\lambda _0}{\varphi _x}\left( {​{x_0},{y_0}} \right) = 0}\\ {​{F_y}\left( {​{x_0},{y_0},{\lambda _0}} \right) = {f_y}\left( {​{x_0},{y_0}} \right) + {\lambda _0}{\varphi _y}\left( {​{x_0},{y_0}} \right) = 0}\\ {​{F_\lambda }\left( {​{x_0},{y_0},{\lambda _0}} \right) = \varphi \left( {​{x_0},{y_0}} \right) = 0} \end{array}} \right.

定理2:

\left(x_0,y_0,z_0 \right )为函数u=f\left(x,y,z\right )在条件$$ \left\{ {\begin{array}{*{20}{c}} {\varphi \left( {x,y,z} \right) = 0}\\ {\phi \left( {x,y,z} \right) = 0} \end{array}} \right.下的极值,f \left(x,y,z \right )\varphi \left(x,y,z \right )\phi \left(x,y,z \right )\left(x_0,y_0,z_0 \right )的邻域内有连续的偏导数且$$ {\left. {\frac{​{\partial \left( {\varphi \phi } \right)}}{​{\partial \left( {y,z} \right)}}} \right|_{\left( {​{x_0},{y_0},{z_0}} \right)}} \ne 0,则存在\lambda_0,\mu_0 \in R,使\left( x_0, y_0, z_0, \varphi_0, \mu_0 \right )为函数的驻点,则

                                                     

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值