HDU 1496 Equations

Equations

Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 77 Accepted Submission(s): 51
 
Problem Description
Consider equations having the following form: 

a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.

It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.

Determine how many solutions satisfy the given equation.
 
Input
The input consists of several test cases. Each test case consists of a single line containing the 4 coefficients a, b, c, d, separated by one or more blanks.
End of file.
 
Output
For each test case, output a single line containing the number of the solutions.
 
Sample Input
1 2 3 -4
1 1 1 1
 
Sample Output
39088
0
 
Author
题目大意:

给出方程的  abcd 求方程有几个解。

思路:

直接暴力显然是不行的  100  * 100   *100  * 100  直接炸。
hash 一下就可以了,注意  x 1   =  3   x2  =  4   和   x1 =4  x2=3  是不一样的,一开始我的思路是 左边两个hash 一下,右边 直接   find,但是这样会少好多结果。所以还是用最基本的想法。
最后  *  16  是因为  只考虑了 一半   负数和正数是一样的,

AC代码:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <memory.h>
using namespace std;

int f1[1000005]; 
int f2[1000005];   
int main()
{
    int i, j, k, sum;
    int a, b, c, d;
    while(scanf("%d %d %d %d", &a, &b, &c, &d) != EOF)
    {
        if(a>0 && b>0 && c>0 && d>0 || a<0 && b<0 && c<0 && d<0)
        {
            printf("0\n");
            continue;
        }
        memset(f1, 0, sizeof(f1));
        memset(f2, 0, sizeof(f2));
        for(i = 1; i <= 100; i++)
        {
            for(j = 1; j<= 100; j++)
            {
                k = a*i*i + b*j*j;
                if(k >= 0) f1[k]++; 
                else f2[-k]++;   
            }
        }
        sum = 0;
        for(i = 1; i <= 100; i++)
        {
            for(j = 1; j<= 100; j++)
            {
                k = c*i*i + d*j*j;
                if(k > 0) sum += f2[k]; 
                else sum += f1[-k];
            }
        }
        printf("%d\n", 16*sum);
    }

    return 0;
}



内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值