反演公式总结

##定义

G n = ∑ i = 0 n a n , i F i G_n=\sum_{i=0}^n a_{n,i}F_i Gn=i=0nan,iFi
F n = ∑ i = 0 n b n , i G i F_n=\sum_{i=0}^n b_{n,i}G_i Fn=i=0nbn,iGi

可认为 a a a b b b是两个下三角矩阵,且 a ⋅ b = I a \cdot b = I ab=I

###二项式反演
G n = ∑ i = 0 n ( n i ) F i    ⟺    G n = ∑ i = 0 n ( − 1 ) n − i ( n i ) F i G_n=\sum_{i=0}^n {n \choose i}F_i\iff G_n=\sum_{i=0}^n (-1)^{n-i}{n \choose i}F_i Gn=i=0n(in)FiGn=i=0n(1)ni(in)Fi

###斯特林反演
G n = ∑ i = 0 n { n i } F i    ⟺    F n = ∑ i = 0 n [ n i ] G i G_n=\sum_{i=0}^n \begin{Bmatrix} n\\i \end{Bmatrix}F_i\iff F_n=\sum_{i=0}^n \begin{bmatrix} n\\i \end{bmatrix}G_i Gn=i=0n{ni}FiFn=i=0n[ni]Gi

###莫比乌斯反演
f n = ∑ d ∣ n g d    ⟺    g n = ∑ d ∣ n μ n d f d f_n=\sum_{d|n}g_d\iff g_n=\sum_{d|n}\mu_{\frac{n}{d}}f_d fn=dngdgn=dnμdnfd

###集合形式

g S = ∑ T ⊆ S f T    ⟺    f S = ∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ g T g_S=\sum_{T \subseteq S} f_T \iff f_S = \sum_{T \subseteq S} (-1)^{|S|-|T|} g_T gS=TSfTfS=TS(1)STgT

###最值反演
max ⁡ { S } = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − 1 min ⁡ { T } \max\{S\}=\sum_{T\subseteq S}(-1)^{|T|-1}\min\{T\} max{S}=TS(1)T1min{T}
###推广
k t h max ⁡ ( S ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − k ( ∣ T ∣ − 1 k − 1 ) min ⁡ ( T ) kth\max(S)=\sum_{T \subseteq S} (-1)^{|T|-k} {|T|-1 \choose k-1} \min(T) kthmax(S)=TS(1)Tk(k1T1)min(T)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值