原題如下︰
Given an array with n
integers, your task is to check if it could become non-decreasing by modifying at most 1
element.
We define an array is non-decreasing if array[i] <= array[i + 1]
holds for every i
(1 <= i < n).
Example 1:
Input: [4,2,3]
Output: True
Explanation: You could modify the first 4
to 1
to get a non-decreasing array.
Example 2:
Input: [4,2,1] Output: False Explanation: You can't get a non-decreasing array by modify at most one element.
Note: The n
belongs to [1, 10,000].
解題思路︰
一開始我自己想的比較簡單,以為只要統計一下前一個數字比後一個數字大的次數,只要不大於一次就是True了。但其實情況挺複雜的,不能只看兩個數字,而是要看整體。我現在的思路就是,若前一個數字比後一個數字大,如果已經是數列的最後兩個數字,那就返回True。如果不是,則需要比對再後一個數字,看看需要修改的是前一個數字還是後一個數字,還是兩個數字都錯了,不能只修改一次就變成递增序列。我感覺我的方法還是有點複雜,別人解這題的代碼量沒有我寫的那麼多,所以我的算法應該有改進的空間。
代碼︰
bool checkPossibility(int* nums, int numsSize) {
int i, count = 0;
for (i = 0; i < numsSize - 1; i++) {
if (nums[i] > nums[i+1]) {
if (count == 0) {
count++;
if (i == numsSize - 2) {
return true;
}
else {
if (nums[i] > nums[i+2] && nums[i+1] > nums[i+2]) {
return false;
}
else if (nums[i] > nums[i+2] && nums[i+1] <= nums[i+2]) {
if (i > 0) {
nums[i] = nums[i-1];
}
else {
nums[i] = nums[i+1];
}
}
else if (nums[i] <= nums[i+2] && nums[i+1] > nums[i+2]) {
nums[i+1] = nums[i];
}
else {
nums[i] = nums[i+1];
}
i--;
}
}
else {
return false;
}
}
}
return true;
}
心得︰
因為是第一次作業,所以我就想着選一道easy的來試試看,但是可能是我比較笨,想了好一段時間才想出方法來,而且雖然通過了,感覺這個算法還是很複雜的樣子。下次打算選中等難度的來做,希望我可以順利完成吧。。。