Tutorial--语音情感识别

OK,沉迷了快两个星期,终于有进展了啊啊啊!!!

这段时间内心崩溃,感觉毫无思路,但是我没放弃!!!看了许多论文,然后代码在这个星期也终于调通了。不过还是有很多地方值得优化,后面再继续努力吧!

其实我个人觉得语音识别这一块的商用还不够,情感识别就更别说了,而且识别率这一块有待提升。

开始正题

数据集用的是EMO-DB数据集。并以此充当训练集,测试集自己想用哪些音频就可以用哪些音频,但是命名和文件路径得符合代码编写的规则。音频时长最好不要超过6秒,以便获得比较好的性能。

一些重要函数:

获取数据集
在这里插入图片描述

预测情感函数
在这里插入图片描述

训练模型获取数据
在这里插入图片描述

项目中重要文件及对应的功能:
audioFeatureExtraction.py :音频特征提取,从音频中提取功能
globalvars.py:全局变量
train.py:训练模型
predict.py:根据音频预测情感

整个框架采用的是双LSTM+attention机制,attention机制是通过逻辑回归实现的。

训练数据
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

预测情感结果
在这里插入图片描述

情感分类有以下几种:生气,无聊,厌恶,焦虑(害怕),幸福,悲伤,中立。

现在模型的预测准确率在百分之六十几,后面会通过继续学习来提高精度的。

生命不息,奋斗不止,Fighting!!!

定个小目标:即将拥有腹肌SZY!!!

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值