EMO-DB数据集介绍(即berlin的那个数据集)

首先想说的就是这个数据集,官方给的介绍也太敷衍了,完全是没有价值的介绍。

EMO-DB数据集是由柏林工业大学录制的德语情感语音库,由10位演员(5男5女)对10个语句(5长5短)进行7种情感(中性/nertral、生气/anger、害怕/fear、高兴/joy、悲伤/sadness、厌恶/disgust、无聊/boredom)的模拟得到,共包含800句语料,采样率48kHz(后压缩到16kHz),16bit量化。语料文本的选取遵从语义中性、无情感倾向的原则,且为日常口语化风格,无过多的书面语修饰。语音的录制在专业录音室中完成,要求演员在演绎某个特定情感前通过回忆自身真实经历或体验进行情绪的酝酿,来增强情绪的真实感。经过20个参与者(10男10女)的听辨实验,得到84.3%的听辨识别率。

这个数据集经过听辨测试后保留男性情感语句233句,女性情感语句302句,共535句。其中语句内容包含日常生活用语的5个短句和5个长句,具有较高情感自由度,不包含某一特定情感倾向。采用16kHZ采样,16bit量化,并以WAV格式保存文件。

我自己做实验的时候也用了这个数据集。 音频的采样频率16kHz,每一个点用16bit的长度存储。数据集不大,只有535条语音数据,情感的标签在文件名的倒数第二位记录着。如下图,‘F’,‘N’,'W’都是不同的情感标签。
在这里插入图片描述

把每一条音频文件打开之后,将每点幅值画出来,如图所示:
在这里插入图片描述

详细的标签对照如下表,数据集都是以德语单词的首字母标记的,也就是下表的右两列。
在这里插入图片描述

其中单个字母对应的情感是:
B(无聊),D(厌恶),N(中性版),W-Arger(麻烦),L-Langeweile(无聊),E-Ekel(讨厌),A-Angst(恐惧),F-Freude(欢乐),T-Trauer(悲伤),N-neutral version(中性版)。

  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
### 回答1: 要将CK+数据集的图片大小改为224*224,需要经过以下步骤: 1. 首先,需要安装Python的图像处理库Pillow。可以使用以下命令安装: ``` pip install Pillow ``` 2. 然后,需要编写Python代码来读取CK+数据集中的图片,并将它们的大小改为224*224。可以使用以下代码: ```python from PIL import Image import os # 设置原始图片路径和新图片路径 original_path = 'CK+数据集的原始路径' new_path = 'CK+数据集的新路径' # 循环遍历原始图片路径中的所有图片 for filename in os.listdir(original_path): # 读取原始图片 image = Image.open(os.path.join(original_path, filename)) # 将图片大小改为224*224 image = image.resize((224, 224)) # 保存新图片 image.save(os.path.join(new_path, filename)) ``` 在上面的代码中,需要将“CK+数据集的原始路径”和“CK+数据集的新路径”替换为实际的路径。然后,代码会循环遍历原始图片路径中的所有图片,将它们的大小改为224*224,并保存到新的路径中。 3. 运行代码,等待处理完所有图片即可。处理完毕后,就可以使用新路径中的图片进行模型训练等操作了。 ### 回答2: 将CK数据集的图片大小改为224*224可以通过以下步骤实现: 首先,需要加载CK数据集并遍历所有图片。 接下来,对每一张图片进行尺寸调整。可以使用Python中的图像处理库PIL(Pillow)来完成这个任务。首先,使用PIL中的`Image.open()`函数打开图片文件,然后使用`resize()`函数将图片的尺寸调整为224*224。最后,保存调整后的图片。 以下是一个示例代码: ```python from PIL import Image import os # 定义数据集路径 dataset_path = 'path_to_ck_dataset' # 遍历数据集中所有的图片文件 for dirpath, dirnames, filenames in os.walk(dataset_path): for filename in filenames: # 获取图片文件路径 image_path = os.path.join(dirpath, filename) # 读取图片 image = Image.open(image_path) # 将图片尺寸调整为224*224 resized_image = image.resize((224, 224)) # 保存调整后的图片 resized_image.save(image_path) ``` 以上代码将CK数据集中的所有图片尺寸调整为224*224,并覆盖保存原始图片。在运行代码之前,请确保已经安装了PIL库。 ### 回答3: 将ck数据集图片大小改为224*224可以通过使用图像处理库来实现,常用的库有opencv-python和PIL(Python Imaging Library)。 使用opencv-python库的方法如下: 1. 导入必要的库: ```python import cv2 import os ``` 2. 遍历ck数据集的图片文件夹,对每张图片进行处理: ```python data_dir = "ck_dataset" # ck数据集所在的文件夹路径 for emo_dir in os.listdir(data_dir): emo_dir_path = os.path.join(data_dir, emo_dir) for img_file in os.listdir(emo_dir_path): img_path = os.path.join(emo_dir_path, img_file) img = cv2.imread(img_path) # 读取图片 img_resized = cv2.resize(img, (224, 224)) # 调整图片大小为224*224 cv2.imwrite(img_path, img_resized) # 保存调整大小后的图片 ``` 使用PIL库的方法如下: 1. 导入必要的库: ```python from PIL import Image import os ``` 2. 遍历ck数据集的图片文件夹,对每张图片进行处理: ```python data_dir = "ck_dataset" # ck数据集所在的文件夹路径 for emo_dir in os.listdir(data_dir): emo_dir_path = os.path.join(data_dir, emo_dir) for img_file in os.listdir(emo_dir_path): img_path = os.path.join(emo_dir_path, img_file) img = Image.open(img_path) # 读取图片 img_resized = img.resize((224, 224)) # 调整图片大小为224*224 img_resized.save(img_path) # 保存调整大小后的图片 ``` 以上方法可以将ck数据集的所有图片大小改为224*224。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值