数据来自天池数据集,淘宝2004年11月18日至12月18日用户行为数据,本文导入446000条数据到本地mysql用于分析。
数据下载地址:https://tianchi.aliyun.com/dataset/dataDetail?dataId=46
数据包括字段为user_id、item_id、behavior_type(1–点击,2–收藏,3–加购物车,4–支付)、user_geohash、item_category、time。数据示例如下:
读取mysql数据
载入相关的库:
import pymysql
import pandas as pd
from pyecharts import Line,Funnel
python3用pymysql连接mysql数据库,将数据读入pandas。
conn = pymysql.connect(host='localhost',user='root',passwd='',db='kaggle')
sql='select * from tianchi_train_user'
df = pd.read_sql(sql,conn)
提出问题
本文要分析的问题有:
- 购物整体购物情况
月pv、月uv、月销售量、日均访问量、有购买行为的用户 - 购买量大的10个category
- 12月点击到支付的转化漏斗
数据清洗
- behavior_type中分别用click、fav、cart、buy代替1、2、3、4。
- 将time字段分割成date、hour两个字段,并把date中字符串转化为日期、设成索引。
df['behavior_type'].replace('1','click',inplace=True)
df['behavior_type'].replace('2','fav',inplace=True)
df