mysql+python+pyecharts电商数据分析

本文利用天池数据集中的淘宝用户行为数据,通过Python连接MySQL进行数据导入,然后进行数据清洗,分析了购物整体情况,如月PV、UV、销售量等,并使用Pyecharts可视化了购买转化漏斗和Top10商品类别。
摘要由CSDN通过智能技术生成

数据来自天池数据集,淘宝2004年11月18日至12月18日用户行为数据,本文导入446000条数据到本地mysql用于分析。
数据下载地址:https://tianchi.aliyun.com/dataset/dataDetail?dataId=46

数据包括字段为user_id、item_id、behavior_type(1–点击,2–收藏,3–加购物车,4–支付)、user_geohash、item_category、time。数据示例如下:
在这里插入图片描述

读取mysql数据

载入相关的库:

import pymysql
import pandas as pd
from pyecharts import Line,Funnel

python3用pymysql连接mysql数据库,将数据读入pandas。

conn = pymysql.connect(host='localhost',user='root',passwd='',db='kaggle')
sql='select * from tianchi_train_user'
df = pd.read_sql(sql,conn)

提出问题

本文要分析的问题有:

  1. 购物整体购物情况
    月pv、月uv、月销售量、日均访问量、有购买行为的用户
  2. 购买量大的10个category
  3. 12月点击到支付的转化漏斗

数据清洗

  1. behavior_type中分别用click、fav、cart、buy代替1、2、3、4。
  2. 将time字段分割成date、hour两个字段,并把date中字符串转化为日期、设成索引。
df['behavior_type'].replace('1','click',inplace=True)
df['behavior_type'].replace('2','fav',inplace=True)
df
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值