斐波纳契数列(Fibonacci Sequence),又称黄金分割数列。在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)
把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。其比值是(√5-1):2,近似值为0.618,通常用希腊字母Ф表示这个值。
附:黄金分割数前面的32位为:0.6180339887 4989484820 458683436565
设一条线段AB的长度为a,C点在靠近B点的黄金分割点上,且AC为b,则a比b就是黄金数
现在我从算法的角度,利用递归和非递归两种方式来进行实现:
一:递归
private static long Fibonacci(int n)
{
long result = 1;//当n<=2时都返回1
if(n>2) //当n>2时,进行递归计算
{
result= Fibonacci(n-1)+Fibonacci(n-2);
}
return result;
}
二:非递归算法,这个算法主要是利用循环来进行计算:
private static long Fibonacci(int n)
{
long result = 1; //当n<=2时都返回1
if (n > 2) //当n>2时,利用循环计算
{
long first = 1;
long second = 1;
int i = 0;
n = n - 2; //每次当然要减少两次循环
while (i < n)
{
first = second;
second = result;
result = first + second;
i++;
}
}
return result;
}