深度学习每周学习总结N3(文本分类实战:基本分类(熟悉流程)、textCNN分类(通用模型)、Bert分类(模型进阶))

0. 总结:

之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种:

1:词袋模型(one-hot编码)

2:TF-IDF

3:词向量(Word Embedding)以及Word2vec(Word Embedding 的方法之一))

详细介绍及中英文分词详见pytorch文本分类(一):文本预处理

上期主要介绍Embedding,及EmbeddingBag 使用示例(对词索引向量转化为词嵌入向量)

本期将主要介绍基本分类(熟悉流程)、拓展:textCNN分类(通用模型)、拓展:Bert分类(模型进阶)

在这里插入图片描述

1. 前期准备

环境安装

这是一个使用PyTorch实现的简单文本分类实战案例。在这个例子中,我们将使用AG News数据集进行文本分类。

AG News(AG’s News Topic Classification Dataset)是一个广泛用于文本分类任务的数据集,尤其是在新闻领域。该数据集是由AG’s Corpus of News Articles收集整理而来,包含了四个主要的类别:世界、体育、商业和科技。

首先,确保已经安装了torchtext与portalocker库

注:相近版本也可,不必完全一致

安装版本参考

PyTorch versiontorchtext versionSupported Python version
nightly buildmain>=3.8, <=3.11
2.3.00.18.0>=3.8, <=3.11
2.2.00.17.0>=3.8, <=3.11
2.1.00.16.0>=3.8, <=3.11
2.0.00.15.0>=3.8, <=3.11
1.13.00.14.0>=3.7, <=3.10
1.12.00.13.0>=3.7, <=3.10
1.11.00.12.0>=3.6, <=3.9
1.10.00.11.0>=3.6, <=3.9
1.9.10.10.1>=3.6, <=3.9
1.90.10>=3.6, <=3.9
1.8.10.9.1>=3.6, <=3.9
1.80.9>=3.6, <=3.9
1.7.10.8.1>=3.6, <=3.9
1.70.8>=3.6, <=3.8
1.60.7>=3.6, <=3.8
1.50.6>=3.5, <=3.8
1.40.52.7, >=3.5, <=3.8
0.4 and below0.2.32.7, >=3.5, <=3.8
# 根据上述表格检查自己的python版本及 pytorch版本
import sys
print(sys.version)
3.8.17 | packaged by conda-forge | (default, Jun 16 2023, 07:01:59) [MSC v.1929 64 bit (AMD64)]
import torch
print(torch.__version__)
2.0.0+cpu

综上torchtext应该安装的版本号是 0.15.0

import torchtext
import portalocker

print(torchtext.__version__)
print(portalocker.__version__)
0.15.0
2.10.0

2. 文本分类基本流程

a. 加载数据

import torch
import torch.nn as nn
# import torchvision
# from torchvision import transforms,datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
C:\Users\Cheng\.conda\envs\pytorch_env_cuda12_0\lib\site-packages\torchvision\io\image.py:13: UserWarning: Failed to load image Python extension: 'Could not find module 'C:\Users\Cheng\.conda\envs\pytorch_env_cuda12_0\Lib\site-packages\torchvision\image.pyd' (or one of its dependencies). Try using the full path with constructor syntax.'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
  warn(





device(type='cpu')
from torchtext.datasets import AG_NEWS

train_iter = AG_NEWS('./data/ag_news',split='train') # 加载 AG News 数据集 ,注意最好指定路径,默认路径可能会报错

torchtext.datasets.AG_NEWS()是一个用于加载 AG News 数据集的 TorchText 数据集类。AG News 数据集是一个用于文本分类任务的常见数据集,其中包含四个类别的新闻文章:世界、科技、体育和商业。torchtext.datasets.AG_NEWS() 类加载的数据集是一个列表,其中每个条目都是一个元组,包含以下两个元素:


一条新闻文章的文本内容。


新闻文章所属的类别(一个整数,从1到4,分别对应世界、科技、体育和商业)。

b.构建词典

try:
    import portalocker
    print("库已安装")
except ImportError:
    print("库未安装")
库已安装
from torchtext.data.utils import get_tokenizer          # 导入用于获取分词器的get_tokenizer函数
from torchtext.vocab import build_vocab_from_iterator   # 用于从迭代器构建词汇表的build_vocab_from_iterator函数

tokenizer = get_tokenizer('basic_english') # 获取分词器

# 定义生成器函数 yield_tokens
def yield_tokens(data_iter):
    for _,text in data_iter:  # 从数据迭代器 data_iter 中提取文本
        yield tokenizer(text) # 对于每一条数据,tokenizer(text) 会返回一个单词列表,并通过 yield 语句将其生成器输出
        
vocab = build_vocab_from_iterator(yield_tokens(train_iter),specials=["<unk>"]) # 使用 yield_tokens(train_iter) 生成的单词列表构建词汇表
vocab.set_default_index(vocab["<unk>"]) # 设置默认索引,如果找不到单词,则会选择默认索引<unk>

数据处理示例:

(0, "This is a sentence")
(1, "Another sentence")

处理过程如下:

  1. 分词

    • “This is a sentence” -> ['this', 'is', 'a', 'sentence']
    • “Another sentence” -> ['another', 'sentence']
  2. 构建词汇表

    • 词汇表将包含:['this', 'is', 'a', 'sentence', 'another', '<unk>']
  3. 设置默认索引

    • 对于词汇表中不存在的单词,例如 “unknown”,将被映射为 <unk> 的索引。

这样,通过分词和构建词汇表,可以将原始文本数据转换为模型可以处理的数值形式(单词索引),从而进行后续的训练和预测。

  1. 文本数据转换
    • “vocab([‘this’, ‘is’, ‘a’, ‘sentence’, ‘another’, ‘’])” -> [52, 21, 5, 2993, 206, 0]

c.生成数据批次和迭代器

# 自定义函数
text_pipeline = lambda x: vocab(tokenizer(x)) #用于将输入的文本通过分词器分词,然后映射到词汇表的索引序列上
label_pipeline = lambda x: int(x) - 1 # 将标签转换为整数并减去 1。这里假设标签从 1 开始,因此减去 1 以适应从 0 开始的索引。
# 自定义函数使用说明
text_pipeline('here is the an example')
[475, 21, 2, 30, 5297]
# 自定义函数使用说明
label_pipeline('10'),label_pipeline('11') 
(9, 10)
from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list,text_list,offsets = [],[],[0] # 初始化为空列表,其中 offsets 初始化为 [0]。
    
    for (_label,_text) in batch: # 遍历批处理中的每个数据项。_label 是标签,_text 是文本。
        # 标签列表
        label_list.append(label_pipeline(_label)) # 将处理后的标签添加到 label_list。
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text),dtype=torch.int64) # 将处理后的文本转换为 PyTorch 的 tensor 并指定数据类型为 int64
        text_list.append(processed_text) # 将处理后的文本添加到 text_list
        
        # 偏移量,即语句的总词汇量
        offsets.append(processed_text.size(0)) # 记录每个文本的长度,作为偏移量
        
    label_list = torch.tensor(label_list,dtype = torch.int64) # 将标签列表转换为 PyTorch 的 tensor
    text_list = torch.cat(text_list)                          # 将所有处理后的文本拼接成一个长的 tensor
    offsets = torch.tensor(offsets[:-1]).cumsum(dim = 0)      # 返回维度dim中输入元素的累计和
    
    return label_list.to(device),text_list.to(device),offsets.to(device) # 计算每个文本的偏移量,使用累计和来表示每个文本在拼接后的长 tensor 中的起始位置

# 数据加载器
dataloader = DataLoader(
    train_iter,
    batch_size = 8,
    shuffle = False,
    collate_fn = collate_batch # 指定批处理函数 collate_batch 用于将一批数据合并为一个小批次。
)

疑问解答:解释为什么文本数据需要在处理后立即转换为 tensor,而标签数据则可以延迟到最后统一转换

其实,文本数据处理后立即转换为 tensor 并拼接,与标签数据在最后统一转换是两种不同的数据处理策略,它们各自有其原因和意义。以下是详细的原因和可能的改进方法:

    1. 标签处理:延迟转换
label_list.append(label_pipeline(_label))

标签数据处理非常简单,只是将标签值转换为整数,并不涉及复杂的操作或大规模的数据处理。因此,将所有标签处理完成后再一次性转换为 tensor 是可行且高效的。

    1. 文本处理:立即转换并拼接
processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
text_list.append(processed_text)

立即转换为 tensor 并拼接主要是为了方便后续的拼接操作和偏移量计算。这种方式确保每个文本处理后的格式一致,也避免了额外的遍历和类型转换操作。

  • 统一转换的可行性
    为了统一操作,可以将所有文本处理完后再进行转换和拼接。以下是修改后的代码示例:

  • 修改后的 collate_batch 函数(虽然代码更简洁,但处理大规模数据或比较复杂的预处理时仍然建议不使用这种修改)

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
    
    for (_label, _text) in batch:
        label_list.append(label_pipeline(_label))
        text_list.append(text_pipeline(_text))  # 先将文本处理为索引列表,暂时不转换为 tensor
        offsets.append(len(text_list[-1]))  # 记录每个文本的长度
    
    label_list = torch.tensor(label_list, dtype=torch.int64)  # 统一转换为 tensor
    
    # 统一转换 text_list 并拼接
    text_list = [torch.tensor(text, dtype=torch.int64) for text in text_list]
    text_list = torch.cat(text_list)
    
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 计算偏移量
    
    return label_list.to(device), text_list.to(device), offsets.to(device)

d.定义模型及实例

这里我们定义TextClassificationModel模型,首先对文本进行嵌入,然后对句子嵌入之后的结果进行均值聚合。

在这里插入图片描述

from torch import nn

class TextClassificationModel(nn.Module):
    def __init__(self,vocab_size,embed_dim,num_class):
        super(TextClassificationModel,self).__init__() # 调用父类 nn.Module 的初始化函数
        # 词嵌入层,它能够对一系列词嵌入的输入进行平均或求和
        self.embedding = nn.EmbeddingBag(
            vocab_size, # 词典大小
            embed_dim,  # 嵌入的维度
            sparse = False
        )
        # 全连接层,它接受嵌入向量的维度 embed_dim 作为输入,并输出 num_class 个类别的得分
        self.fc = nn.Linear(embed_dim,num_class)
        self.init_weights()
        
    # 初始化函数,用于设置模型中各层的初始权重
    def init_weights(self):
        initrange = 0.5 # 初始化范围
        self.embedding.weight.data.uniform_(-initrange,initrange) # 将嵌入层的权重初始化为均匀分布,范围在 [-0.5, 0.5] 之间
        self.fc.weight.data.uniform_(-initrange,initrange) # 将全连接层的权重初始化为均匀分布,范围在 [-0.5, 0.5] 之间
        self.fc.bias.data.zero_() # 将全连接层的偏置初始化为 0
        
    def forward(self,text,offsets):
        embedded = self.embedding(text,offsets) # 将输入的 text 和 offsets 传入嵌入层,得到嵌入向量
        return self.fc(embedded) # 将嵌入向量传入全连接层,得到每个类别的得分

self.embedding.weight.data.uniform_(-initrange, initrange)这段代码是在 PyTorch 框架下用于初始化神经网络的词嵌入层(embedding layer)权重的一种方法。这里使用了均匀分布的随机值来初始化权重,具体来说,其作用如下:

1
self.embedding: 这是神经网络中的词嵌入层(embedding layer)。词嵌入层的作用是将离散的单词表示(通常为整数索引)映射为固定大小的连续向量。这些向量捕捉了单词之间的语义关系,并作为网络的输入。

2
self.embedding.weight: 这是词嵌入层的权重矩阵,它的形状为 (vocab_size, embedding_dim),其中 vocab_size 是词汇表的大小,embedding_dim 是嵌入向量的维度。

3
self.embedding.weight.data: 这是权重矩阵的数据部分,我们可以在这里直接操作其底层的张量。

4
.uniform_(-initrange, initrange): 这是一个原地操作(in-place operation),用于将权重矩阵的值用一个均匀分布进行初始化。均匀分布的范围为 [-initrange, initrange],其中 initrange 是一个正数。

通过这种方式初始化词嵌入层的权重,可以使得模型在训练开始时具有一定的随机性,有助于避免梯度消失或梯度爆炸等问题。在训练过程中,这些权重将通过优化算法不断更新,以捕捉到更好的单词表示。

# 定义实例
num_class = len(set([label for (label,text) in train_iter]))
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size,em_size,num_class).to(device)

e. 定义训练函数

import time

def train(dataloader):
    model.train() # 切换为训练模式
    total_acc,train_loss,total_count = 0,0,0
    log_interval = 500 # 设定日志记录间隔,每 500 个批次输出一次训练日志
    start_time = time.time()
    
    for idx,(label,text,offsets) in enumerate(dataloader):
        
        predicted_label = model(text,offsets)
        
        optimizer.zero_grad()                   # grad属性归零
        loss = criterion(predicted_label,label) # 计算网络输出和真实值之间的差距,label为真实值
        loss.backward()  # 反向传播
        optimizer.step() # 每一步自动更新
        
        # 记录acc 与loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapesd = time.time() - start_time
            print('| epoch{:1d} | {:4d}/{:4d} batches '
                  '| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch,idx,len(dataloader),
                                                                  total_acc/total_count,
                                                                  train_loss/total_count)
                 )
            total_acc,train_loss,total_count = 0,0,0
            start_time = time.time()

f.定义评估函数

def evaluate(dataloader):
    model.eval() # 切换为测试模式
    total_acc,train_loss,total_count = 0,0,0
    
    with torch.no_grad():
        for idx,(label,text,offsets) in enumerate(dataloader):
            predicted_label = model(text,offsets)
            
            loss = criterion(predicted_label,label) # 计算loss值
            # 记录测试数据
            total_acc = (predicted_label.argmax(1) == label).sum().item()
            train_loss += loss.item()
            total_count += label.size(0)
            
    return total_acc/total_count,train_loss/total_count

g. 拆分数据集并训练模型

from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset

# 超参数
EPOCH = 10      # epoch
LR = 5          # 学习率
BATCH_SIZE = 64 # batch size for training

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr = LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,1.0,gamma = 0.1)
total_accu = None

train_iter,test_iter = AG_NEWS() # 加载数据
train_dataset = to_map_style_dataset(train_iter)
test_dataset = to_map_style_dataset(test_iter)
num_train = int(len(train_dataset) * 0.95)

split_train_,split_valid_ = random_split(
    train_dataset,
    [num_train,len(train_dataset) - num_train]
)
train_dataloader = DataLoader(split_train_,
                              batch_size = BATCH_SIZE,
                              shuffle = True,
                              collate_fn = collate_batch) # 使用前面定义的 collate_batch 函数来处理批数据
valid_dataloader = DataLoader(split_valid_,
                             batch_size = BATCH_SIZE,
                             shuffle = True,
                             collate_fn = collate_batch)
test_dataloader = DataLoader(test_dataset,
                             batch_size = BATCH_SIZE,
                             shuffle = True,
                             collate_fn = collate_batch)

for epoch in range(1,EPOCH + 1):
    epoch_start_time = time.time()
    train(train_dataloader) # 调用训练函数,使用训练数据加载器进行训练
    val_acc,val_loss = evaluate(valid_dataloader) # 调用评估函数,使用验证数据加载器计算验证准确率和损失
    
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('=' * 61)
    print('| epoch {:1d} | time:{:4.2f}s | '
          'valid_acc {:4.3f} valid_loss {:4.3f}'.format(epoch,time.time() - epoch_start_time,val_acc,val_loss)
         )
    print('=' * 61)
| epoch1 |  500/1782 batches | train_acc 0.904 train_loss 0.00454
| epoch1 | 1000/1782 batches | train_acc 0.903 train_loss 0.00452
| epoch1 | 1500/1782 batches | train_acc 0.909 train_loss 0.00433
=============================================================
| epoch 1 | time:31.01s | valid_acc 0.007 valid_loss 0.005
=============================================================
| epoch2 |  500/1782 batches | train_acc 0.918 train_loss 0.00378
| epoch2 | 1000/1782 batches | train_acc 0.919 train_loss 0.00379
| epoch2 | 1500/1782 batches | train_acc 0.916 train_loss 0.00386
=============================================================
| epoch 2 | time:32.03s | valid_acc 0.007 valid_loss 0.005
=============================================================
| epoch3 |  500/1782 batches | train_acc 0.929 train_loss 0.00328
| epoch3 | 1000/1782 batches | train_acc 0.922 train_loss 0.00356
| epoch3 | 1500/1782 batches | train_acc 0.927 train_loss 0.00340
=============================================================
| epoch 3 | time:32.34s | valid_acc 0.007 valid_loss 0.004
=============================================================
| epoch4 |  500/1782 batches | train_acc 0.943 train_loss 0.00269
| epoch4 | 1000/1782 batches | train_acc 0.945 train_loss 0.00268
| epoch4 | 1500/1782 batches | train_acc 0.944 train_loss 0.00272
=============================================================
| epoch 4 | time:32.00s | valid_acc 0.007 valid_loss 0.004
=============================================================
| epoch5 |  500/1782 batches | train_acc 0.946 train_loss 0.00261
| epoch5 | 1000/1782 batches | train_acc 0.947 train_loss 0.00258
| epoch5 | 1500/1782 batches | train_acc 0.946 train_loss 0.00262
=============================================================
| epoch 5 | time:32.56s | valid_acc 0.008 valid_loss 0.004
=============================================================
| epoch6 |  500/1782 batches | train_acc 0.948 train_loss 0.00257
| epoch6 | 1000/1782 batches | train_acc 0.950 train_loss 0.00252
| epoch6 | 1500/1782 batches | train_acc 0.946 train_loss 0.00256
=============================================================
| epoch 6 | time:41.89s | valid_acc 0.007 valid_loss 0.004
=============================================================
| epoch7 |  500/1782 batches | train_acc 0.948 train_loss 0.00252
| epoch7 | 1000/1782 batches | train_acc 0.950 train_loss 0.00245
| epoch7 | 1500/1782 batches | train_acc 0.949 train_loss 0.00249
=============================================================
| epoch 7 | time:38.78s | valid_acc 0.007 valid_loss 0.004
=============================================================
| epoch8 |  500/1782 batches | train_acc 0.950 train_loss 0.00249
| epoch8 | 1000/1782 batches | train_acc 0.950 train_loss 0.00245
| epoch8 | 1500/1782 batches | train_acc 0.950 train_loss 0.00244
=============================================================
| epoch 8 | time:37.05s | valid_acc 0.008 valid_loss 0.004
=============================================================
| epoch9 |  500/1782 batches | train_acc 0.951 train_loss 0.00238
| epoch9 | 1000/1782 batches | train_acc 0.949 train_loss 0.00251
| epoch9 | 1500/1782 batches | train_acc 0.950 train_loss 0.00245
=============================================================
| epoch 9 | time:39.89s | valid_acc 0.007 valid_loss 0.004
=============================================================
| epoch10 |  500/1782 batches | train_acc 0.949 train_loss 0.00252
| epoch10 | 1000/1782 batches | train_acc 0.951 train_loss 0.00250
| epoch10 | 1500/1782 batches | train_acc 0.948 train_loss 0.00246
=============================================================
| epoch 10 | time:33.48s | valid_acc 0.007 valid_loss 0.004
=============================================================

torchtext.data.functional.to_map_style_dataset 函数的作用是将一个迭代式的数据集(Iterable-style dataset)转换为映射式的数据集(Map-style dataset)。这个转换使得我们可以通过索引(例如:整数)更方便地访问数据集中的元素。

在 PyTorch 中,数据集可以分为两种类型:Iterable-style 和 Map-style。Iterable-style 数据集实现了 iter() 方法,可以迭代访问数据集中的元素,但不支持通过索引访问。而 Map-style 数据集实现了 getitem() 和 len() 方法,可以直接通过索引访问特定元素,并能获取数据集的大小。

TorchText 是 PyTorch 的一个扩展库,专注于处理文本数据。torchtext.data.functional 中的 to_map_style_dataset 函数可以帮助我们将一个 Iterable-style 数据集转换为一个易于操作的 Map-style 数据集。这样,我们可以通过索引直接访问数据集中的特定样本,从而简化了训练、验证和测试过程中的数据处理。

h. 使用测试集数据评估模型

print('Checking the results of test dataset.')
test_acc, test_loss = evaluate(test_dataloader)
print('test accuracy {:8.3f}'.format(test_acc))
Checking the results of test dataset.
test accuracy    0.006

3. 拓展:textCNN分类(通用模型)

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
tokenizer = get_tokenizer('basic_english')
train_iter = AG_NEWS(split='train')

def yield_tokens(data_iter):
    for _, text in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])
# text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1

def text_pipeline(x):
    return [vocab[token] for token in tokenizer(x)]

def collate_batch(batch):
    label_list, text_list = [], []
    max_length = 512  # 设定统一的文本长度
    
    for (_label, _text) in batch:
        label_list.append(label_pipeline(_label))
        # 将文本转换为词汇表索引列表
        tokenized_text = [vocab[token] for token in tokenizer(_text)]
        processed_text = torch.tensor(tokenized_text, dtype=torch.int64)
        # 根据max_length截断或填充文本
        if processed_text.size(0) < max_length:
            # 文本长度不足时填充
            processed_text = F.pad(processed_text, (0, max_length - processed_text.size(0)), "constant", 0)
        else:
            # 文本长度超过max_length时截断
            processed_text = processed_text[:max_length]
        text_list.append(processed_text)
        # print(processed_text.size())  # 打印每个处理后的文本尺寸 torch.Size([512])
    
    label_list = torch.tensor(label_list, dtype=torch.int64)
    # print("Before stack, single text shape:", text_list[0].shape)  # 检查单个文本的形状
    text_list = torch.stack(text_list, dim=0)  # 现在应该可以正确堆叠
    # print("After stack, texts shape:", text_list.shape)  # 检查堆叠后的形状
    return label_list, text_list
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset

# 首先,转换生成器为具有映射样式的数据集
train_iter, test_iter = AG_NEWS()
train_dataset = to_map_style_dataset(train_iter)
test_dataset = to_map_style_dataset(test_iter)

# 计算训练集和验证集的大小
num_train = int(len(train_dataset) * 0.8)
num_valid = len(train_dataset) - num_train

# 划分数据集
train_data, valid_data = random_split(train_dataset, [num_train, num_valid])

# 定义DataLoader
train_dataloader = DataLoader(train_data, batch_size=64, shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(valid_data, batch_size=64, shuffle=False, collate_fn=collate_batch)
class MyModel(nn.Module):
    def __init__(self, vocab_size, embedding_dim, num_filters, filter_sizes, output_dim, dropout=0.5):
        super(MyModel, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.convs = nn.ModuleList([
            nn.Conv2d(1, num_filters, (fs, embedding_dim)) for fs in filter_sizes
        ])
        self.fc = nn.Linear(num_filters * len(filter_sizes), output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, text):
        # print("Initial text shape:", text.shape)
        embedded = self.embedding(text)
        # print("After embedding:", embedded.shape)
        embedded = embedded.unsqueeze(1)
        # print("After unsqueeze:", embedded.shape)

        conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs]
        #for i, conv in enumerate(conved):
        #    print(f"After conv {i} and squeeze:", conv.shape)

        pooled = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved]
        #for i, pool in enumerate(pooled):
        #    print(f"After pooling {i}:", pool.shape)

        cat = torch.cat(pooled, dim=1)
        #print("After concatenation:", cat.shape)
        cat = self.dropout(cat)
        output = self.fc(cat)
        #print("Model output shape:", output.shape)
        return output



def train(dataloader, model, loss_fn, optimizer):
    import os
    os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
    
    model.train()
    total_acc, total_loss, total_count = 0, 0, 0
    
    for labels, texts in dataloader:
        #print("Batch texts shape:", texts.shape)  # 查看批次文本的形状
        #print("Batch labels shape:", labels.shape)  # 查看批次标签的形状
        labels, texts = labels.to(device), texts.to(device)
        
        optimizer.zero_grad()
        pred = model(texts)
        
        #print("Model output shape:", pred.shape)  # 查看模型输出的形状
        
        loss = loss_fn(pred, labels)
        loss.backward()
        optimizer.step()
        
        total_acc += (pred.argmax(1) == labels).sum().item()
        total_loss += loss.item()
        total_count += labels.size(0)
    
    return total_acc / total_count, total_loss / total_count

def evaluate(dataloader, model, loss_fn):
    model.eval()
    total_acc, total_loss, total_count = 0, 0, 0
    
    with torch.no_grad():
        for labels, texts in dataloader:
            labels, texts = labels.to(device), texts.to(device)
            pred = model(texts)
            loss = loss_fn(pred, labels)
            
            total_acc += (pred.argmax(1) == labels).sum().item()
            total_loss += loss.item()
            total_count += labels.size(0)
    
    return total_acc / total_count, total_loss / total_count

vocab_size = len(vocab)
embed_dim = 100
num_class = len(set([label for (label, text) in AG_NEWS(split='train')]))
model = MyModel(vocab_size, embed_dim, num_filters=10, filter_sizes=[2, 3, 4], output_dim=num_class).to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
lambda1 = lambda epoch: 0.95 ** epoch  # 逐步减少学习率
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
import copy

epochs     = 10

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dataloader, model, loss_fn, optimizer)
    scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = evaluate(valid_dataloader, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

Epoch: 1, Train_acc:60.2%, Train_loss:0.015, Test_acc:84.7%, Test_loss:0.007, Lr:9.50E-04
Epoch: 2, Train_acc:81.8%, Train_loss:0.008, Test_acc:88.1%, Test_loss:0.006, Lr:9.02E-04
Epoch: 3, Train_acc:86.0%, Train_loss:0.007, Test_acc:89.1%, Test_loss:0.005, Lr:8.57E-04
Epoch: 4, Train_acc:88.1%, Train_loss:0.006, Test_acc:89.8%, Test_loss:0.005, Lr:8.15E-04
Epoch: 5, Train_acc:89.3%, Train_loss:0.005, Test_acc:90.0%, Test_loss:0.005, Lr:7.74E-04
Epoch: 6, Train_acc:90.2%, Train_loss:0.005, Test_acc:90.3%, Test_loss:0.005, Lr:7.35E-04
Epoch: 7, Train_acc:90.9%, Train_loss:0.004, Test_acc:90.4%, Test_loss:0.005, Lr:6.98E-04
Epoch: 8, Train_acc:91.7%, Train_loss:0.004, Test_acc:90.4%, Test_loss:0.005, Lr:6.63E-04
Epoch: 9, Train_acc:92.1%, Train_loss:0.004, Test_acc:90.4%, Test_loss:0.005, Lr:6.30E-04
Epoch:10, Train_acc:92.6%, Train_loss:0.004, Test_acc:90.4%, Test_loss:0.005, Lr:5.99E-04
Done
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

4. 拓展:Bert分类(模型进阶)

代码部分

import torch
from torch.utils.data import DataLoader, Dataset
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
import matplotlib.pyplot as plt
from torchtext.datasets import AG_NEWS
# 数据加载
train_iter = AG_NEWS(split='train')
test_iter = AG_NEWS(split='test')
# 统计文本长度
import matplotlib.pyplot as plt

def compute_text_lengths(data_iter):
    lengths = []
    for _, text in data_iter:
        # 计算每个文本的单词数
        word_count = len(text.split())
        lengths.append(word_count)
    return lengths

# 计算长度
lengths = compute_text_lengths(train_iter)

# 绘制文本长度的分布
plt.figure(figsize=(10, 6))
plt.hist(lengths, bins=50, alpha=0.75)
plt.title('Distribution of Text Lengths in AG_NEWS Dataset')
plt.xlabel('Text Length (number of words)')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()


在这里插入图片描述

from transformers import BertTokenizer
from torch.utils.data import DataLoader, Dataset
import torch

# 指定本地模型文件路径
local_model_path = './pretrained_transformers/bert-base-uncased'

class AGNewsDataset(Dataset):
    def __init__(self, dataset_iter, tokenizer, max_length=100):
        self.samples = []
        for label, text in dataset_iter:
            label = label - 1  # 将标签从1-4转换为0-3
            encoding = tokenizer(text, truncation=True, max_length=max_length, padding='max_length', return_tensors="pt")
            self.samples.append((label, encoding['input_ids'].squeeze(0), encoding['attention_mask'].squeeze(0)))

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        return self.samples[idx]

# 实例化分词器
tokenizer = BertTokenizer.from_pretrained(local_model_path)

# 实例化数据集
train_dataset = AGNewsDataset(train_iter, tokenizer)
test_dataset = AGNewsDataset(test_iter, tokenizer)
# 为了有效地训练,我们通常使用 DataLoader 来批量加载数据
def collate_fn(batch):
    labels = torch.tensor([item[0] for item in batch])
    input_ids = torch.stack([item[1] for item in batch])
    attention_masks = torch.stack([item[2] for item in batch])
    return labels, input_ids, attention_masks

train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True, collate_fn=collate_fn)
test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=False, collate_fn=collate_fn)
import torch

def train_epoch(model, dataloader, optimizer, device):
    model.train()
    total_loss, total_accuracy = 0, 0

    for labels, input_ids, masks in dataloader:
        labels, input_ids, masks = labels.to(device), input_ids.to(device), masks.to(device)
        optimizer.zero_grad()
        outputs = model(input_ids, token_type_ids=None, attention_mask=masks, labels=labels)
        loss = outputs.loss
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        # 计算准确率方法一,使用 pred.argmax(1),我的习惯用法
        total_accuracy += (outputs.logits.argmax(1) == labels).sum().item()
        
        # 计算准确率方法二,非习惯用法
        # _, predicted_labels = torch.max(outputs.logits, 1)
        # total_accuracy += (predicted_labels == labels).sum().item()

    avg_loss = total_loss / len(dataloader)
    avg_accuracy = total_accuracy / len(dataloader.dataset)
    return avg_loss, avg_accuracy

def evaluate(model, dataloader, device):
    model.eval()
    total_loss, total_accuracy = 0, 0

    with torch.no_grad():
        for labels, input_ids, masks in dataloader:
            labels, input_ids, masks = labels.to(device), input_ids.to(device), masks.to(device)
            outputs = model(input_ids, token_type_ids=None, attention_mask=masks, labels=labels)
            loss = outputs.loss

            total_loss += loss.item()
            # 使用 argmax(1) 计算准确率
            total_accuracy += (outputs.logits.argmax(1) == labels).sum().item()

            # _, predicted_labels = torch.max(outputs.logits, 1)
            # total_accuracy += (predicted_labels == labels).sum().item()

    avg_loss = total_loss / len(dataloader)
    avg_accuracy = total_accuracy / len(dataloader.dataset)
    return avg_loss, avg_accuracy

from transformers import AdamW

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = BertForSequenceClassification.from_pretrained(local_model_path, num_labels=4)
model.to(device)
optimizer = AdamW(model.parameters(), lr=5e-5)

epochs = 4
train_losses, train_accuracies = [], []
test_losses, test_accuracies = [], []

for epoch in range(epochs):
    train_loss, train_accuracy = train_epoch(model, train_dataloader, optimizer, device)
    test_loss, test_accuracy = evaluate(model, test_dataloader, device)

    train_losses.append(train_loss)
    train_accuracies.append(train_accuracy)
    test_losses.append(test_loss)
    test_accuracies.append(test_accuracy)
    print(f'Epoch {epoch + 1}/{epochs}: Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}')
Some weights of BertForSequenceClassification were not initialized from the model checkpoint at ./pretrained_transformers/bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
D:\Anacanda3\envs\pytorch_cuda12_0_py310\lib\site-packages\transformers\optimization.py:591: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
  warnings.warn(
D:\Anacanda3\envs\pytorch_cuda12_0_py310\lib\site-packages\transformers\models\bert\modeling_bert.py:439: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at ..\aten\src\ATen\native\transformers\cuda\sdp_utils.cpp:263.)
  attn_output = torch.nn.functional.scaled_dot_product_attention(


Epoch 1/4: Train Loss: 0.2336, Train Accuracy: 0.9206, Test Loss: 0.1912, Test Accuracy: 0.9379
Epoch 2/4: Train Loss: 0.1535, Train Accuracy: 0.9486, Test Loss: 0.1828, Test Accuracy: 0.9425
Epoch 3/4: Train Loss: 0.1237, Train Accuracy: 0.9595, Test Loss: 0.1977, Test Accuracy: 0.9379
Epoch 4/4: Train Loss: 0.0982, Train Accuracy: 0.9681, Test Loss: 0.2179, Test Accuracy: 0.9396
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_accuracies, label='Train Accuracy')
plt.plot(test_accuracies, label='Test Accuracy')
plt.title('Accuracy over epochs')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(train_losses, label='Train Loss')
plt.plot(test_losses, label='Test Loss')
plt.title('Loss over epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

在这里插入图片描述

疑问解答:

使用镜像模型下载模型方法记录:

网站记录:
[下载huggingface模型——全方法总结](如何快速下载huggingface模型——全方法总结 - padeoe的文章 - 知乎
https://zhuanlan.zhihu.com/p/663712983)
模型下载镜像网站

镜像网站下载方法:
在完成设置环境变量后,你可以使用 Hugging Face CLI 工具将模型下载到 D 盘中的指定目录。下面是具体步骤:

    1. 安装依赖

你已经完成了这一步,确保 huggingface_hub 已经安装:

pip install -U huggingface_hub
    1. 设置环境变量

你已经完成了这一步,在 PowerShell 中设置环境变量:

$env:HF_ENDPOINT = "https://hf-mirror.com"
    1. 下载模型

使用 Hugging Face CLI 工具下载模型 google-bert/bert-base-uncased 到 D 盘中的指定目录,例如 D:\huggingface\models

  • 创建目标目录(如果不存在)

首先,确保目标目录存在。如果不存在,可以创建它:

New-Item -ItemType Directory -Path "D:\huggingface\models" -Force
  • 下载模型

然后,使用以下命令下载模型:

huggingface-cli download google-bert/bert-base-uncased --local-dir D:\huggingface\models\bert-base-uncased --resume-download --local-dir-use-symlinks False

这个命令将模型下载到 D:\huggingface\models\bert-base-uncased 目录中,并禁用文件软链接。

  • 完整流程示例
  1. 确保安装了 huggingface_hub

    pip install -U huggingface_hub
    
  2. 设置环境变量:

    $env:HF_ENDPOINT = "https://hf-mirror.com"
    
  3. 创建目标目录:

    New-Item -ItemType Directory -Path "D:\huggingface\models" -Force
    
  4. 下载模型:

    huggingface-cli download google-bert/bert-base-uncased --local-dir D:\huggingface\models\bert-base-uncased --resume-download --local-dir-use-symlinks False
    

通过这些步骤,你应该能够成功将模型下载到 D 盘中的指定目录。
C:\Users\Cheng>huggingface-cli download google-bert/bert-base-uncased --local-dir D:\DataAnalysis\jupyter_notebook_warehouse\pytorch学习\pretrained_transformers\bert-base-uncased --resume-download --local-dir-use-symlinks False

提问:AGNewsDataset类代码解析

代码解析:这段代码定义了一个名为 AGNewsDataset 的类,这个类继承自 PyTorch 的 Dataset 类,并用于处理 AG_NEWS 文本数据集以适配 BERT 模型的输入格式。以下是逐句的详细解析:

类定义和初始化方法 __init__

class AGNewsDataset(Dataset):

这行代码定义了一个新的类 AGNewsDataset,它继承自 PyTorch 的 Dataset 类。继承 Dataset 类是创建自定义数据集类的典型方法,用于与 PyTorch 的其他数据加载和处理工具(如 DataLoader)无缝集成。

def __init__(self, dataset_iter, tokenizer, max_length=512):
    self.samples = []
  • __init__ 方法是类的构造函数,用于初始化新创建的对象。它接收三个参数:dataset_iter(数据集迭代器),tokenizer(用于文本分词的 BERT 分词器),以及一个可选参数 max_length(最大序列长度,默认为512)。
  • self.samples = [] 初始化一个空列表,用来存储处理后的数据样本。
for label, text in dataset_iter:
    label = label - 1  # 将标签从1-4转换为0-3
  • 这个循环遍历数据集迭代器中的每一条数据。每条数据包含一个标签和一个文本字符串。
  • label = label - 1 将标签从原始的 1-4 范围调整到 0-3,因为 PyTorch 通常期望类标签从0开始。
encoding = tokenizer(text, truncation=True, max_length=max_length, padding='max_length', return_tensors="pt")
  • 这行代码使用传入的 BERT 分词器对文本进行编码。truncation=True 表示如果文本长度超过 max_length,则将其截断。padding='max_length' 确保所有文本编码后长度相同,不足的部分用填充符补齐。return_tensors="pt" 表示返回的编码格式为 PyTorch 张量。
self.samples.append((label, encoding['input_ids'].squeeze(0), encoding['attention_mask'].squeeze(0)))
  • 这行代码将处理好的标签、输入ID张量和注意力掩码张量添加到 samples 列表中。使用 .squeeze(0) 是为了去除多余的维度,使得每个样本的输入ID和注意力掩码都是一维的。

数据集长度方法 __len__

def __len__(self):
    return len(self.samples)
  • __len__ 方法返回数据集中的样本数,这是 Dataset 类必须实现的方法之一。它使得 PyTorch 的 DataLoader 能够知道数据集的大小。

获取单个项目方法 __getitem__

def __getitem__(self, idx):
    return self.samples[idx]
  • __getitem__ 方法根据提供的索引 idx 返回相应的样本。这是另一个 Dataset 类必须实现的方法,它允许 DataLoader 按需索引数据集中的元素。

这样,AGNewsDataset 类就可以被 DataLoader 使用,用于按批次加载和准备数据,进而供模型训练使用。

提问:解析自定义的数据批量加载函数 collate_fn:

这段代码定义了一个 collate_fn 函数,并用它来创建 PyTorch 的 DataLoader 对象,分别为训练集和测试集。下面是详细的解析:

1. collate_fn 函数

collate_fn 函数是用来决定如何将多个数据样本(这些样本组成了一个 batch)组合到一起的。这在处理那些需要特定方式合并数据的情况下非常有用,尤其是当数据项的形状或类型不一致时。

def collate_fn(batch):
    labels = torch.tensor([item[0] for item in batch])
    input_ids = torch.stack([item[1] for item in batch])
    attention_masks = torch.stack([item[2] for item in batch])
    return labels, input_ids, attention_masks
  • batch: 这是一个列表,其中每个元素都是 Dataset.__getitem__ 方法返回的数据样本。在这个例子中,每个样本包括三个部分:标签、输入 ID 和注意力掩码。

  • labels: 从 batch 中提取每个样本的第一个元素(标签),并将这些标签转换为一个 PyTorch 张量。这里使用了列表推导式来收集所有标签。

  • input_ids: 从 batch 中提取每个样本的第二个元素(输入 ID),并使用 torch.stack 将这些输入 ID 堆叠成一个新的张量。torch.stack 是将一系列张量沿着一个新的维度合并,这里即是在 batch 维度上堆叠。

  • attention_masks: 同样地,从 batch 中提取每个样本的第三个元素(注意力掩码),并使用 torch.stack 合并成一个张量。

这个函数最终返回一组张量:labels, input_ids, attention_masks,它们都是整个 batch 的合集,形状通常为 [batch_size, sequence_length]labels 的形状则为 [batch_size]

2. DataLoader 对象

train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True, collate_fn=collate_fn)
test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=False, collate_fn=collate_fn)
  • DataLoader: 是 PyTorch 中用于加载数据集的工具,它可以自动处理数据的批次化、打乱、多线程加载等操作。

  • train_dataset 和 test_dataset: 这些是之前定义好的数据集对象。

  • batch_size: 指定了每个 batch 包含的样本数,这里设置为 16。

  • shuffle: 指定是否在每个 epoch 开始时打乱数据(仅对训练数据设置为 True)。打乱数据有助于减少模型训练过程中的过拟合。

  • collate_fn: 为 DataLoader 指定了 collate_fn 函数,这是自定义的数据批处理方式,用于处理以上提到的输入 ID 和注意力掩码。

通过这样的设置,您的训练和测试 DataLoader 将能够有效地为模型训练和评估提供预处理好的数据批次。这是实现高效和有效训练的关键步骤之一。

提问:统计文本长度并调整max_length的长度该如何实现

统计文本长度并据此调整 max_length 是一项实用的数据预处理步骤,可以帮助您更好地理解数据集并优化模型的性能。下面我会详细说明如何用 Python 实现这一过程:

1. 统计文本长度

首先,我们需要计算数据集中每个文本条目的长度(可以是单词数或字符数)。这里,我们将以单词数为例:

from torchtext.datasets import AG_NEWS
import matplotlib.pyplot as plt

def compute_text_lengths(data_iter):
    lengths = []
    for _, text in data_iter:
        # 计算每个文本的单词数
        word_count = len(text.split())
        lengths.append(word_count)
    return lengths

# 加载数据集
train_iter = AG_NEWS(split='train')

# 计算长度
lengths = compute_text_lengths(train_iter)

# 绘制文本长度的分布
plt.figure(figsize=(10, 6))
plt.hist(lengths, bins=50, alpha=0.75)
plt.title('Distribution of Text Lengths in AG_NEWS Dataset')
plt.xlabel('Text Length (number of words)')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

这段代码将加载 AG_NEWS 训练数据集,并统计每个新闻条目的单词数量,然后绘制这些长度的直方图。

2. 分析结果并选择 max_length

通过观察直方图,您可以大致了解大多数文本的长度。选择 max_length 的策略如下:

  • 选择覆盖大部分数据的长度:如果直方图显示大多数文本的长度在 200 词以内,那么设置 max_length 为 200 或稍高一点可能是合理的。
  • 考虑模型和资源限制:虽然可能想要覆盖尽可能多的文本内容,但也要考虑到更长的序列会增加计算复杂性和内存需求。BERT 模型的默认最大长度是 512,这通常是一个安全的上限。

3. 验证调整后的 max_length

一旦选择了一个新的 max_length,您可以通过在模型训练前重新处理数据集来实施它。确保使用新的 max_length 更新数据编码过程:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
new_max_length = 200  # 假设您根据分析选择了这个长度

def encode_texts(tokenizer, texts, max_length):
    return tokenizer(texts, truncation=True, padding='max_length', max_length=max_length, return_tensors="pt")

# 示例文本编码
encoded_data = encode_texts(tokenizer, "Example text for encoding.", new_max_length)

这样,您就能够根据实际数据分布合理设置 max_length,从而在保证效率的同时最大化模型的性能。如果数据集变化或模型更换,您可能需要重新进行这些步骤来调整参数。

提问:统计文本长度分布的方法发现,文本长度集中在25-50个单词,超过75个单词的文本很少,文本最大长度在200左右,该如何确定max_length

回答:
既然您已经分析了 AG_NEWS 数据集中的文本长度分布,发现大部分文本长度集中在 25-50 个单词,超过 75 个单词的非常少,且最长文本大约在 200 个单词,这为确定 max_length 提供了实际的依据。

如何选择 max_length

  1. 考虑覆盖大多数样本

    • 由于超过 75 个单词的文本很少,选择一个稍大于这个值的 max_length 可以覆盖绝大多数情况。例如,您可以选择 max_length 为 80 或 100,这样可以处理大部分文本而不需要截断太多内容。
  2. 权衡性能与计算成本

    • 较短的 max_length 可以减少计算量,加快模型训练速度,同时也可能减少内存使用。但是,太短可能无法充分利用上下文信息,特别是对于少数较长的文本。
    • 如果实际应用中对速度和资源消耗特别敏感,甚至可以考虑更短的长度,如 50 或 60。
  3. 实验验证

    • 您可以通过实验来验证不同的 max_length 如何影响模型性能。具体来说,可以在几个不同的长度(如 50、75、100 和 125)上训练模型,然后比较它们在验证集上的表现。选择在保持良好性能的同时,计算成本最低的配置。
  4. 考虑特定任务的需求

    • 如果任务对文本的精确理解非常敏感,可能需要选择较长的 max_length 以避免丢失信息。如果任务只需捕捉关键信息,可以使用较短的长度。

实施建议
根据您的描述,一个合理的起始点可能是设置 max_length 为 100,然后观察模型的性能。如果发现模型性能不佳,并怀疑是由于截断导致重要信息丢失,可以适当增加长度。相反,如果模型训练非常慢,可以尝试缩短长度到 80 或更少,特别是如果大多数文本都非常短的情况下。

最后,通过多次迭代和调整,结合实际应用场景的需求,您可以找到最合适的 max_length 设置。

提问:其他模型,比如textCNN 模型 中的max_length是否也应该是同样的设置方法,其对文本的处理方式是embedding

回答:

是的,对于使用文本CNN模型的场景,选择 max_length 的方法和考虑因素与使用BERT类似,但可能需要根据模型架构的不同稍作调整。TextCNN和其他基于卷积的模型通常对序列长度的灵活性更强一些,因为卷积层可以适应不同长度的输入。下面是具体到TextCNN模型时设置 max_length 的一些特殊考虑和步骤。

文本CNN的特殊考虑

  1. 模型架构

    • TextCNN使用多个不同大小的卷积核来捕捉不同范围的上下文信息。因此,即使文本相对较短,使用较长的 max_length 也可能有助于模型捕捉更广泛的上下文特征。
  2. 灵活性

    • 与BERT不同,TextCNN不需要特定长度的位置嵌入,因此在理论上对输入长度的要求更为灵活。这意味着您可以根据实际文本长度分布更自由地调整 max_length
  3. 计算效率

    • TextCNN通常比BERT在计算上更高效,因为它不涉及大量的自注意力计算。这可能允许您在资源许可的情况下使用较长的输入序列。

设置 max_length 的步骤

与之前类似,确定 TextCNN 的 max_length 也应基于数据的实际分析:

  1. 数据分析

    • 如之前所述,首先分析数据集中文本的长度分布。这有助于确定大多数文本的长度范围。
  2. 实验验证

    • 尝试不同的 max_length 设置,观察模型在验证集上的性能。特别是要注意不同长度设置对模型准确率和训练时间的影响。
  3. 模型适应性测试

    • 可以测试模型对于不同 max_length 的敏感性,看看长度变化对性能的影响是否显著。

总的来说,选择 max_length 应基于对数据的理解、模型架构的需求和计算资源的考虑,同时通过实验来找到最佳设置。

提问:以下这两种代码写法可以互换吗
total_acc += (pred.argmax(1) == labels).sum().item() 

_, predicted_labels = torch.max(outputs.logits, 1)
total_accuracy += (predicted_labels == labels).sum().item()

回答:

是的,这两行代码基本上是执行相同的操作,只是写法略有不同。它们都用于计算模型预测的准确性。我们可以对比这两种方法来看看它们是如何工作的:

方法 1

total_acc += (pred.argmax(1) == labels).sum().item()

这里的代码做了以下几件事:

  1. pred.argmax(1):这个方法从预测结果 pred 中沿着指定的维度(这里是维度 1,即类别概率维度)取出最大值的索引。如果 pred 是模型的 logits 或 softmax 输出,则 argmax(1) 会返回每个样本最可能的类别索引。
  2. (pred.argmax(1) == labels):这个操作生成一个布尔类型的张量,表示预测类别是否与真实标签相同。
  3. .sum():统计预测正确的数量。
  4. .item():将这个 Python 数字从一个单元素张量中取出来,用于后续的累加操作。

方法 2

_, predicted_labels = torch.max(outputs.logits, 1)
total_accuracy += (predicted_labels == labels).sum().item()

这行代码的工作流程如下:

  1. torch.max(outputs.logits, 1):这个函数返回两个结果,第一个是每行的最大值,第二个是这些最大值所在的索引(即 predicted_labels)。这里通过下划线 _ 忽略了第一个返回值,只取类别索引。
  2. (predicted_labels == labels):同样生成一个布尔张量,表示预测是否正确。
  3. .sum().item() 的操作与方法 1 相同。

可以互换吗?
这两种方法可以互换使用,因为它们实际上都在做同样的事情:计算模型在一个批次中正确预测的样本数。方法 2 明确使用了 torch.max(),它在语义上可能更清晰一些,尤其是当与一些文档或教程相比较时,因为 torch.max() 显式地返回最大值和其索引,使得代码的意图更加直观。

选择哪一种方式主要取决于个人偏好或团队的编码规范。如果代码的可读性是一个考量因素,可能更倾向于使用方法 2,因为它更直观地表明了正在找寻最大的 logits 并获取它们的索引。但在性能上,两种方法没有显著差异。

代码改写:使用 argmax(1) 计算准确率

# 使用 argmax(1) 计算准确率
total_accuracy += (outputs.logits.argmax(1) == labels).sum().item()
  • 12
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值