功能实现
qq_33511693
来自广州的算法工程师
展开
-
目标检测中的评价指标F-score AP mAP ROC/AUC的理解和使用
文章目录IOU、precision、 recall、 accurancyPR曲线ROC曲线F-scoreAP、mAP验证指标的选择 深度学习测试模型效果的时, 经常会使用一些特定的评价指标. 根据数据集的分布情况以及使用侧重的效果可以选择不同的指标进行评价. 一般常用的评价指标有F-score、mAP、ROC/AUC. 在介绍这三种评价指标之前首先了解下准确率、召回率、精准率、IOU等指标的概念和计算方式.IOU、precision、 recall、 accurancy Precision,准确原创 2020-05-13 15:18:38 · 5498 阅读 · 0 评论 -
静默活体检测的python实现
本文将实现静默活体检测, 网络为二分类问题输出图片中的人脸为真人脸 还是照片视频替代的假人脸. 具体的代码实现方式如下.其中face_detector的百度网盘下载地址: 密码: hgu4#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2020/3/25 12:03 下午# @Author : sarah fe...原创 2020-04-05 12:41:10 · 2767 阅读 · 3 评论 -
配合式活体检测的python实现
之前发布的活体检测调研的文章中有提到目前的检测方法有配合式活体检测、静默活体检测以及双目活体防伪检测. 本文将实现配合式的活体检测, 主要从常见的脸部的眨眼、 张嘴、 摇头、 点头四个操作来进行活体检测.主要的思路式首先框定人脸, 然后通过寻找人脸中的68个关键点, 在这四个操作中随机选取3个操作, 根据关键点的变化来观察是否有上述操作过程.具体实现代码如下:#!/usr/bin/env p...原创 2020-04-05 12:21:22 · 2287 阅读 · 6 评论 -
python实现多元线性拟合、一元多项式拟合、多元多项式拟合
数据分析中经常会使用到数据拟合,本文中将阐述如何实现一元以及多元的线性拟合以及多项式拟合,本文中只涉及实现方式,不涉及理论知识。模型拟合中涉及的误差评估方法如下所示:import numpy as npdef stdError_func(y_test, y): return np.sqrt(np.mean((y_test - y) ** 2))def R2_1_func(y_te...原创 2020-03-28 23:01:13 · 29044 阅读 · 4 评论 -
活体检测技术调研
根据百度百科的解释,活体检测是 在一些身份验证场景确定对象真实生理特征的方法,在人脸识别应用中,活体检测能通过眨眼、张嘴、摇头、点头等组合动作,使用人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人操作。可有效抵御照片、换脸、面具、遮挡以及屏幕翻拍等常见的攻击手段,从而帮助用户甄别欺诈行为,保障用户的利益。一、常见竞品:旷视科技的2PD 全像素双核单摄红外人脸解锁、旷世(Face++)...原创 2020-05-02 18:18:35 · 1563 阅读 · 0 评论 -
决策数原理介绍
文章目录决策树ID3算法的信息论基础树形算法(随机森林、GBDT、XGBoost等),树形算法的基础就是决策树。决策树因其易理解、易构建、速度快的特性,被广泛应用于统计学、数据挖掘、机器学习领域。决策树可以作为分类算法,也可以作为回归算法,同时也特别适合集成学习比如随机森林。本文就对决策树算法原理做一个总结,上篇对ID3, C4.5的算法思想做了总结,下篇重点对CART算法做一个详细的介绍。决...原创 2020-02-09 18:07:35 · 959 阅读 · 0 评论 -
HoloLens中的视觉SLAM介绍
HoloLens是微软在2015年1月22日凌晨发布的一款头戴式的便携全息计算机设备。不同于VR眼镜,HoloLens直接在现实世界中呈现出一些虚拟的全息投影,即混合现实,不仅增强了真实感,还提供了一种新的人与现实世界交互的方式。HoloLens与用户的交互主要有以下三种方式:1、凝视(gaze)HoloLens可以探测到用户视线的焦点所在从而做出一些判断和反应。2、手势(gesture)...原创 2020-01-03 11:37:43 · 4379 阅读 · 0 评论 -
Git入门基本操作
Git是一个开源的分布式版本控制系统,可以有效、高速地处理从很小到非常大的项目版本管理。 Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。为了有效管理代码,同时方便同一个项目存在多人开发的情况,使用git分布式控制和管理代码的方式,同一个Git仓库可以分布到不同的机器上,通过这种分布式的管理方式,保证了代码的安全性也让代码的管理变得十...原创 2020-01-03 10:36:34 · 154 阅读 · 0 评论 -
人脸识别中常用的人脸检测和人脸对齐
人脸检测和人脸对齐是人脸识别的前提,也是进行一切人人脸相关的人脸项目的开始步骤,本文将从常用的人脸检测的数据集,以及现在公用的比较好的方法开始讲述。人脸检测常用的数据集人脸检测的测试数据库有很多,这里仅选择FDDB和WIDER FACE,这个两个数据库都有官方长期维护,各种算法都会提交结果进行比较,而且很多早期数据库目前都已经饱和,没有比较意义。第一个是2010年非约束环境人脸检测数据库FD...原创 2019-11-06 11:53:51 · 2056 阅读 · 0 评论 -
人脸识别的arcface实现
本文将简单讲述arcface从训练到部署的整个过程。本文将不阐述arcface的基本原理,只讲述操作过程。主要包括前期的数据筛选和准备,模型训练以及模型部署。此文中参考的arcface的代码地址数据集准备首先准备需要训练的人脸数据并按照每个人一个文件夹的形式将人脸照片保存起来,为了使人脸更符合亚洲人的特征应该尽量多的采用亚洲人来你的图片训练。每个文件夹中最少要有两张或者是两张以上的人脸...原创 2019-10-17 10:57:39 · 3209 阅读 · 3 评论 -
神经网络中的激活函数
为什么要引入激活函数如果不使用非线性的激活函数,无论叠加多少层,最终的输出依然只是输入的线性组合。引入非线性的激活函数,使得神经网络可以逼近任意函数。TensorFlow 中有如下激活函数它们定义在 tensorflow-1.1.0/tensorflow/python/ops/nn.py 文件中,这里包括平滑非线性的激活函数,如: sigmoid、tanh、elu、softplus 和...原创 2019-09-19 15:44:00 · 562 阅读 · 0 评论 -
keras基本函数以及网络构建介绍
Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。具体keras中文介绍文档keras的简单介绍 你的字体 Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)支持CNN和RNN,或二者的结合...原创 2019-09-17 11:11:59 · 739 阅读 · 0 评论 -
训练神经网络的前期数据准备
训练神经网络需要对数据进行前期处理和准备,以图片分类为例。训练神经网络的框架一般主流tensorflow、pytorch、keras等等。以这三种框架为例准备神经网络训练所需要的数据格式。以数组的方式保存图片 该方法以数组的形式读取图片通过append保存在内存中,在训练的过程中直接在内存中读取图片进行训练。优点是直观明了,缺点是当图片数量较多的时候回占用较多的内存。当图片数量比较多的时候不...原创 2019-09-12 17:23:52 · 2562 阅读 · 0 评论 -
turtlebot robot运动导航操作
turtlebot(简称TB2)是一款ROS官方打造的基于indigo的软硬件科研平台,用户可以在机器人中搭载,用于机器人的基本运动操作。具体的介绍可以参考创客智造turtlebot的安装以及控制。首先...原创 2019-09-12 11:36:01 · 411 阅读 · 0 评论 -
计算机视觉中图像操作
传统的计算机视觉方法形态学操作一般作用于二值化图,来连接相邻的元素或分离成独立的元素。腐蚀和膨胀是针对图片中的白色部分!膨胀腐蚀和开闭运算图像腐蚀运算:增加图形黑色的部分,减少白的的部分图像膨胀运算:增加图形白的部分,减少黑色部分开运算:先腐蚀再膨胀,有助于消除噪音闭运算:线膨胀再腐蚀,用于消除前景对象内的小孔或者是对象上的小黑点。腐蚀腐蚀的效果是把图片"变瘦",其原理是在原图的...原创 2019-07-01 07:12:28 · 169 阅读 · 0 评论 -
指针与仪表盘自动识别
利用传统的计算机视觉方法识别仪表盘中的指针参考链接yolov3原理和实现参考上篇博客首先基于yolov3定位出仪表盘的位置,然后剪切仪表盘进行下一步的分析yolov3检测的IOU可能不是很精准接下来利用霍夫圆检测定位出仪表盘。霍夫圆检测的基本原理:霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点,跟霍夫线变换一样,也是通过投票,生成累积坐标平面...原创 2019-07-01 07:12:16 · 2406 阅读 · 5 评论 -
目标检测系列——数据处理以及MAP计算
目标检测一般利用标记工具生成xml后缀的文件,当进行图片增强或者其他操作的时候需要对xml文件进行相应的修改,本文将讲述如何在已经标记好的图片上修改xml文件以及部分数据增强操作,同时利用训练好的模型计算每个类别的MAPxml文件的修改和生成首先将xml文件中的字段保存到字典,之后修改字典对应的key,之后将修改好的字典转换成xml文件。xml文件转换成字典形式 def xml2dic...原创 2019-07-10 17:52:07 · 359 阅读 · 1 评论 -
docker镜像安装中常见的错误
PS:所有的apt-get安装中如果定位不到包直接运行代码sudo apt-get update sudo apt-get upgrade镜像中安装opencv-python报错ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory解决方案:apt-get ins...原创 2019-07-24 16:43:04 · 661 阅读 · 0 评论 -
docker的安装和使用
docker的核心概念docker的大部分操作主要是围绕着它的三大核心概念-----镜像、容器和仓库展开。镜像:docdker镜像类似于虚拟机镜像,可以理解为一个只读的模板。镜像是创建docker容器的基础。容器:容器是镜像创建的运行实例,可以将启动、开始、停止、删除,这些容器之间是彼此隔离、互不可见的。docker安装ubuntu环境下安装dockerdocker目前只能运行在64为...原创 2019-07-25 17:27:22 · 196 阅读 · 0 评论 -
tx2板子安torch、opencv以及安装环境技巧
tx2板子系统为Arm64,与普通的x86系统安装环境时使用的安装包或者是源代码不同,有些软件一般用apy-get以及pip是安装不上的。本文讲述整个TX2板子刷机到安装torch、opencv、tensorflow_gpu、docker如何使用GPU以及板子的一些安装技巧。tx2板子刷机在介绍TX2板子刷机之前先了解下板子的规格首先介绍下jetson Tx2板子Jetson TX2 模块...原创 2019-08-09 14:57:01 · 1693 阅读 · 0 评论 -
redis服务器之间传输图片和音频
部署环境的时候需要在服务器端加载模型本地端传输数据,或者是需要提前加载模型,在获取到数据后以发布订阅的方式传输给加载的模型并得到结果输出。这些过程需要将数据进行传输,redis很好的解决了数据传输和获取的问题。具体以图片传输和声音传输为例。首先将服务端和本地端的redis安装好安装redissudo apt-get install redis-server #安装redis服务pip3 ...原创 2019-08-23 14:27:02 · 1966 阅读 · 0 评论 -
python中dataframe基本操作
python中的pandas库用来处理DataFrame的数据。首先读取和保存csv格式的数据 import pandas as pd df= pd.read_csv(filename) #读取csv格式的数据 df.to_csv(savename)#保存csv格式的数据数据信息查询 df.shape #查看数据维度 df.info() #查看数据信息 df.dty...原创 2019-09-12 11:30:25 · 755 阅读 · 0 评论 -
目标检测系列
目标检测YOLOv3论文及网络框架分析论文分析参考多尺度特征融合(针对小目标),应对不同大小的目标框,基础框架为darknet-53除去全连接层,具体的框架融合形式如下所示:网络中具体框架分析详见:(https://blog.csdn.net/Gentleman_Qin/article/details/84350496)pytorch代码实现参考代码连接一、直接利用与训练模型...原创 2019-07-01 07:12:57 · 314 阅读 · 0 评论