1.深度学习是机器学习的一个领域,出发点是:模拟人脑进行分析学习的神经网络。模仿人脑的机制来解释数据。
1.1人工神经网络NNS(或连接模型connection Modle)是一种模仿神经网络行为特征,进行分布式并行助理的算法数学模型。
1.2机器学习的学习形式分类:有监督和无监督学习。
有监督学习:从标记的训练数据来推断一个功能的机器学习任务,由一个输入对象和一个期望的输出值(监督信号)组成。常见的监督学习算法包括【回归分析算法regression】【统计分类算法classification】主要用来分类和预测。
无监督学习:从没有标记的训练数据中学习数据的信息或特征,简而言之就是对没有标记的训练样本进行学习,标记未知导致样本歧义性高。【聚类】就是典型的无监督学习,无监督学习和统计数据密度估计有很大关系。在无监督学习中,使用的许多方法是基于数据挖掘方法。
1.3学习方法分类
【经验性归纳学习】
【分析学习】
【类比学习】
【遗传算法】
【连接学习】
【增强学习】
1.4机器学习的相关技术
【BP神经网络】
【随机森林Random Forests】
【支持向量机】
【深度学习】