caffe学习笔记(一)深度学习的基础概念

1.深度学习是机器学习的一个领域,出发点是:模拟人脑进行分析学习的神经网络。模仿人脑的机制来解释数据。

1.1人工神经网络NNS(或连接模型connection Modle)是一种模仿神经网络行为特征,进行分布式并行助理的算法数学模型。

1.2机器学习的学习形式分类:有监督和无监督学习。

       有监督学习:从标记的训练数据来推断一个功能的机器学习任务,由一个输入对象和一个期望的输出值(监督信号)组成。常见的监督学习算法包括【回归分析算法regression】【统计分类算法classification】主要用来分类和预测。

       无监督学习:从没有标记的训练数据中学习数据的信息或特征,简而言之就是对没有标记的训练样本进行学习,标记未知导致样本歧义性高。【聚类】就是典型的无监督学习,无监督学习和统计数据密度估计有很大关系。在无监督学习中,使用的许多方法是基于数据挖掘方法。

1.3学习方法分类

【经验性归纳学习】

【分析学习】

【类比学习】

【遗传算法】

【连接学习】

【增强学习】

1.4机器学习的相关技术

【BP神经网络】

【随机森林Random Forests】

【支持向量机】

【深度学习】


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值