Deep learning系列(十五)有监督和无监督训练

介绍了深度学习的发展历程,及在此过程中有监督训练和无监督训练的角色问题。

2015-11-02 19:59:56

阅读数 17643

评论数 2

Deep learning系列(十四)Layer和solver中参数详解

本节对Layer和Solver两个模块中一些重要的参数进行了介绍。

2015-10-30 16:43:56

阅读数 1936

评论数 2

Deep learning系列(十三)Transfer learning 和 caffe Fine-tuning

介绍了Transfer Learning及在用caffe进行微调。

2015-10-29 20:41:44

阅读数 10266

评论数 0

Deep learning系列(十二)caffe结构解析

通过Lenet的训练,初步了解了caffe的结构,主要包括caffe重要的四个模块:Net,Layers,Blobs和Solver。

2015-10-28 16:57:48

阅读数 3274

评论数 0

numpy

用python来学习机器学习算法的过程中很大一部分时间是花在数据预处理上,在这个过程中又几乎是在用numpy库来处理数据,因此,掌握好numpy的语法至关重要。下面介绍在使用过程中常用的一些numpy语法。

2015-10-27 09:27:56

阅读数 2190

评论数 0

git和github在ubuntu上的使用

git是一个应用最广泛的分布式版本控制系统,github是提供远程git仓库托管服务的网站。本文简单介绍git和github在ubuntu上的安装和使用。

2015-10-25 10:36:43

阅读数 3744

评论数 1

pycharm ImportError: No module named caffe

pycharm importerror no module named caffe

2015-10-21 22:20:07

阅读数 7477

评论数 1

Deep learning系列(十一)caffe在ubuntu14.4上的安装

介绍了caffe在ubuntu14.4上的完整安装过程。

2015-10-20 16:28:00

阅读数 2466

评论数 0

Deep learning系列(十)随机梯度下降

介绍了随机梯度下降法在使用过程中的一些技巧,包括使用动量和在迭代过程中逐步更新学习率。

2015-10-16 20:27:55

阅读数 21007

评论数 1

Deep learning系列(九)目标函数

介绍了神经网络目标函数中的数据项和正则化项的几种构造方式。

2015-10-15 21:14:43

阅读数 3169

评论数 0

Deep learning系列(八)参数初始化

介绍了在实际应用中,神经网络参数如何进行初始化。

2015-10-15 15:57:44

阅读数 5136

评论数 0

Deep learning系列(七)激活函数

介绍了三种神经网络激活函数。

2015-10-15 10:35:46

阅读数 26550

评论数 0

交叉验证

通过K重交叉验证进行模型选择或者特征选择,并给出python代码。

2015-10-13 22:20:44

阅读数 4256

评论数 1

deeplearning系列(六)卷积神经网络

实现了一个包含卷积层和池化层的卷积神经网络。

2015-10-13 15:41:35

阅读数 1303

评论数 0

deeplearning系列(五)实现一个简单的深度神经网络

实现了一个包含两个隐藏层和一个softmax输出层的深度神经网络,训练过程包括逐层贪婪训练和微调两部分。

2015-10-12 15:53:28

阅读数 11945

评论数 1

softmax回归

简要介绍了softmax回归原理,及其代码实现。

2015-10-11 15:59:30

阅读数 962

评论数 0

deeplearning系列(四)主成分分析与白化

介绍深度学习常用的数据预处理方法:主成分分析与白化。

2015-10-08 20:42:53

阅读数 1293

评论数 0

deeplearning系列(三)梯度检验

对计算的梯度值进行梯度检验,确保计算的梯度值是正确无误的。

2015-10-08 15:47:48

阅读数 5794

评论数 1

logistic回归与牛顿法

在logistic回归中使用牛顿法,替代梯度下降法,解决梯度下降法迭代次数太多的问题。

2015-10-04 16:38:44

阅读数 3605

评论数 0

deeplearning系列(二)自编码神经网络

介绍了一种深度学习 Pre_training技术,即自编码神经网络。

2015-10-02 18:44:23

阅读数 8886

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭