传统的二分查找是直接让数组的最大坐标与最小坐标之和除以二求得的mid
但是有一种情况值得考虑: 例如大家要用字典查找单词amuse 那么大家会翻字典中间吗?会每次都翻中间去寻找吗?肯定是直接翻前面的页去寻找这个单词。 加入有1 到1000000个数近似均匀分布,那么大家找100时再从中间那样递归是不是会慢很多?那么我们就需要改变mid的计算方法去优化寻找key(关键值)的步骤。
只需做一个优化如下:
mid = front + (key-a[front])/(a[end]-a[front])*(end-front);//(end为最大坐标,front为最小坐标)
但是有一种情况值得考虑: 例如大家要用字典查找单词amuse 那么大家会翻字典中间吗?会每次都翻中间去寻找吗?肯定是直接翻前面的页去寻找这个单词。 加入有1 到1000000个数近似均匀分布,那么大家找100时再从中间那样递归是不是会慢很多?那么我们就需要改变mid的计算方法去优化寻找key(关键值)的步骤。
只需做一个优化如下:
mid = front + (key-a[front])/(a[end]-a[front])*(end-front);//(end为最大坐标,front为最小坐标)
这样如果数组中元素分布近似均匀,那么就可以比课堂上哪一种快很多,但是不均匀时也并不快,所以使用时就要合理取舍了。