题目链接
题目描述
如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:
n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)
示例 1:
输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。
示例 2:输入: arr = [1,3,7,11,12,14,18]
输出: 3
解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。
提示:
3 <= arr.length <= 1000
1 <= arr[i] < arr[i + 1] <= 10^9
解题思路
动态规划
状态定义:
dp[i][j]:表示以arr[i]、arr[j]为结尾的斐波那契数列的最大长度
dp[i][j] = Len(.....,arr[i], arr[j])
状态转移:
考虑在arr[i]之前有某个数字arr[k],则满足下式
arr[k]+arr[i] == arr[j]
所以状态转移方程
根据状态转移方程就可以写出代码,为了不超时,在寻找k时没必要再遍历一遍,而是通过map来记录值到索引的映射
代码
Python
class Solution:
def lenLongestFibSubseq(self, arr: list[int]) -> int:
n = len(arr)
dic = {}
for idx, val in enumerate(arr):
dic[val] = idx
dp = [[2] * n for _ in range(n - 1)]
ret = 0
for i in range(1, n - 1):
for j in range(i + 1, n):
diff = arr[j] - arr[i]
if diff in dic and dic[diff] < i:
k = dic[diff]
dp[i][j] = dp[k][i] + 1
ret = max(ret, dp[i][j])
return ret