每日一题:873. 最长的斐波那契子序列的长度

该博客介绍了如何使用动态规划方法解决寻找给定数组中最长斐波那契式子序列长度的问题。通过状态定义dp[i][j]表示以arr[i]、arr[j]为结尾的斐波那契数列长度,并利用状态转移方程优化查找过程,避免超时。给出的Python代码实现了这一算法,能够在给定限制条件下找到最长的斐波那契子序列的长度。
摘要由CSDN通过智能技术生成

题目链接

力扣

题目描述

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回  0 。

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。
示例 2:

输入: arr = [1,3,7,11,12,14,18]
输出: 3
解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。
 

提示:

3 <= arr.length <= 1000
1 <= arr[i] < arr[i + 1] <= 10^9

解题思路

动态规划

状态定义:

dp[i][j]:表示以arr[i]、arr[j]为结尾的斐波那契数列的最大长度

dp[i][j] = Len(.....,arr[i], arr[j])

状态转移:

考虑在arr[i]之前有某个数字arr[k],则满足下式

arr[k]+arr[i] == arr[j]

所以状态转移方程

dp[i][j] = \max _{arr[k]+arr[i] == arr[j]}(dp[k][i] + 1)

根据状态转移方程就可以写出代码,为了不超时,在寻找k时没必要再遍历一遍,而是通过map来记录值到索引的映射

代码

Python

class Solution:
    def lenLongestFibSubseq(self, arr: list[int]) -> int:
        n = len(arr)
        dic = {}
        for idx, val in enumerate(arr):
            dic[val] = idx
        dp = [[2] * n for _ in range(n - 1)]
        ret = 0
        for i in range(1, n - 1):
            for j in range(i + 1, n):
                diff = arr[j] - arr[i]
                if diff in dic and dic[diff] < i:
                    k = dic[diff]
                    dp[i][j] = dp[k][i] + 1
                    ret = max(ret, dp[i][j])
        return ret

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值