机器学习---scikit-learn中KNN算法的封装

1,工具准备,python环境,pycharm

2,在机器学习中,KNN是不需要训练过程的算法,也就是说,输入样例可以直接调用predict预测结果,训练数据集就是模型。当然这里必须将训练数据和训练标签进行拟合才能形成模型。

3

3,在pycharm中创建新的项目工程,并在项目下新建KNN.py文件。

import numpy as np
from math import sqrt
from collections import Counter

class KNNClassifier:
    def __init__(self,k):
        """初始化KNN分类器"""
        assert  k >= 1
        """断言判断k的值是否合法"""
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self,X_train,y_train):
        """根据训练数据集X_train和Y_train训练KNN分类器,形成模型"""
        assert X_train.shape[0] == y_train.shape[0]
        """数据和标签的大小必须一样
        assert self.k <= X_train.shape[0]
        """k的值不能超过数据的大小"""
        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self,X_predict):
        """必须将训练数据集和标签拟合为模型才能进行预测的过程"""
        assert self._X_train is not None and self._y_train is not None
        """训练数据和标签不可以是空的"""
        assert X_predict.shape[1]== self._X_train.shape[1]
        """待预测数据和训练数据的列(特征个数)必须相同"""
        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self,x):
        """给定单个待测数据x,返回x的预测数据结果"""
        assert x.shape[0] == self._X_train.shape[1]
        """x表示一行数据,即一个数组,那么它的特征数据个数,必须和训练数据相同
        distances = [sqrt(np.sum((x_train - x)**2))for x_train in self._X_train]
        nearest = np.argsort(distances)
        topk_y = [self._y_train[i] for i in nearest[:self.k]]
        votes = Counter(topk_y)
        return votes.most_common(1)[0][0]

4,新建test.py文件,引入KNNClassifier对象。

from KNN.py import KNNClassifier
raw_data_x = [[3.393,2.331],
              [3.110,1.781],
              [1.343,3.368],
              [3.582,4.679],
              [2.280,2.866],
              [7.423,4.696],
              [5.745,3.533],
              [9.172,2.511],
              [7.792,3.424],
              [7.939,0.791]]
raw_data_y = [0,0,0,0,0,1,1,1,1,1]
X_train = np.array(raw_data_x)
y_train = np.array(raw_data_y)
x = np.array([9.880,3.555])

# 要将x这个矩阵转换成2维的矩阵,一行两列的矩阵
X_predict = x.reshape(1,-1)

"""1,创建一个对象,设置K的值为6"""
knn_clf = KNNClassifier(6)

"""2,将训练数据和训练标签融合"""
knn_clf.fit(X_train,y_train)

"""3,经过2才能跳到这里,传入待预测的数据"""
y_predict = knn_clf.predict(X_predict)
print(y_predict)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值