证明:高斯白噪声的正交变换仍然是高斯白噪声

       对于正交变换,如 DCT、DST、Haar 变换等等,我们都可以使用一个正交矩阵 A {\bf{A}} A 来表示其变换核。对于一个向量 x \bf{x} x,记我们添加的加性高斯白噪声(Additive White Gaussian Noise, AWGN)为 n \bf{n} n,得到的有噪声向量为 y \bf{y} y,即有

y = x + n , n i ∼ N ( 0 ,    σ 2 ) . (1.1) {\mathbf{y}} = {\mathbf{x}} + {\mathbf{n}},\quad {n_i} \sim \mathcal{N}(0,\;{\sigma ^2}).\tag{1.1} y=x+n,niN(0,σ2).(1.1)

那么该变换可表示为

T y = A y = A ( x + n ) = A x + A n = T x + T n . (1.2) {{\mathbf{T}}_y} = {\mathbf{Ay}} = {\mathbf{A}}({\mathbf{x}} + {\mathbf{n}}) = {\mathbf{Ax}} + {\mathbf{An}} = {{\mathbf{T}}_x} + {{\mathbf{T}}_n}.\tag{1.2} Ty=Ay=A(x+n)=Ax+An=Tx+Tn.(1.2)

所以有噪声信号 y \bf{y} y 的变换系数可以拆分为无噪声信号 x \bf{x} x 的变换系数与噪声信号 n \bf{n} n 的变换系数的和。由于这里只有噪声信号 n \bf{n} n 是随机的,我们讨论 T y {\bf{T}}_y Ty 的分布时只需讨论噪声信号的变换系数的分布即可。

       因为

T n ( k ) = A k , 0 n 0 + A k , 1 n 1 + … + A k , N − 1 n N − 1 , ∑ i = 0 N − 1 A k , i 2 = 1. (1.3) T_n^{(k)} = {A_{k,0}}{n_0} + {A_{k,1}}{n_1} + \ldots + {A_{k,N - 1}}{n_{N - 1}},\quad \sum\limits_{i = 0}^{N - 1} {A_{k,i}^2} = 1.\tag{1.3} Tn(k)=Ak,0n0+Ak,1n1++Ak,N1nN1,i=0N1Ak,i2=1.(1.3)

所以很容易可得

T n ( k ) ∼ N ( 0 ,    σ 2 ) . (1.4) T_n^{(k)} \sim \mathcal{N}(0,\;{\sigma ^2}).\tag{1.4} Tn(k)N(0,σ2).(1.4)

也就是说噪声信号 n \bf{n} n 的各个正交变换系数依然服从零均值的高斯分布,且方差与噪声本身一样,也就是同分布的。那么,各个系数之间的关系又是怎样的呢?从式(1.4)看来,各个变换系数都是所有噪声信号分量的线性组合,似乎这些变换系数是有一定的相关性的。但事实上,由于 A \bf{A} A 为正交矩阵,各个变换系数之间是不相关的,为此我们可以计算任意两个系数之间的协方差,可得

C o v ( T n ( k ) ,    T n ( l ) ) = E ( T n ( k ) ⋅ T n ( l ) ) − E ( T n ( k ) ) E ( T n ( l ) ) = E ( ∑ i = 0 N − 1 A k , i n i ⋅ ∑ i = 0 N − 1 A l , i n i ) = ∑ i = 0 N − 1 A k , i A l , i ⋅ E ( n i 2 ) + ∑ i = 0 N − 1 ∑ j ≠ i A k , i A l , j ⋅ E ( n i ) E ( n j ) = ∑ i = 0 N − 1 A k , i A l , i ⋅ σ 2 = 0. (1.5) \begin{aligned} &Cov\left( {T_n^{(k)},\;T_n^{(l)}} \right) = E\left( {T_n^{(k)} \cdot T_n^{(l)}} \right) - E\left( {T_n^{(k)}} \right)E\left( {T_n^{(l)}} \right) \\ &= E\left( {\sum\limits_{i = 0}^{N - 1} {{A_{k,i}}{n_i}} \cdot \sum\limits_{i = 0}^{N - 1} {{A_{l,i}}{n_i}} } \right) \\ &= \sum\limits_{i = 0}^{N - 1} {{A_{k,i}}{A_{l,i}} \cdot E\left( {n_i^2} \right)} + \sum\limits_{i = 0}^{N - 1} {\sum\limits_{j \ne i} {{A_{k,i}}{A_{l,j}} \cdot E\left( {{n_i}} \right)E\left( {{n_j}} \right)} } \\ &= \sum\limits_{i = 0}^{N - 1} {{A_{k,i}}{A_{l,i}}} \cdot {\sigma ^2} = 0. \\ \end{aligned} \tag{1.5} Cov(Tn(k),Tn(l))=E(Tn(k)Tn(l))E(Tn(k))E(Tn(l))=E(i=0N1Ak,inii=0N1Al,ini)=i=0N1Ak,iAl,iE(ni2)+i=0N1j=iAk,iAl,jE(ni)E(nj)=i=0N1Ak,iAl,iσ2=0.(1.5)

这里用到了一些性质,即

E ( n i m ) = σ 2 ( m − 1 ) ( m − 3 ) … ( 1 ) , m = 2 ,    4 ,    6 ,    … E ( n i n j ) = E ( n i ) E ( n j ) = 0 , ← I n d e p e n d e n t ∑ i = 0 N − 1 A k , i A l , i = 0. ← O r t h o g o n a l (1.6) \begin{aligned} &E\left( {n_i^m} \right) = {\sigma ^2}(m - 1)(m - 3) \ldots (1),\quad m = 2,\;4,\;6,\; \ldots \\ &E\left( {{n_i}{n_j}} \right) = E\left( {{n_i}} \right)E\left( {{n_j}} \right) = 0,\quad \leftarrow Independent \\ &\sum\limits_{i = 0}^{N - 1} {{A_{k,i}}{A_{l,i}}} = 0.\quad \leftarrow Orthogonal \\ \end{aligned} \tag{1.6} E(nim)=σ2(m1)(m3)(1),m=2,4,6,E(ninj)=E(ni)E(nj)=0,Independenti=0N1Ak,iAl,i=0.Orthogonal(1.6)

因此,噪声信号 n \bf{n} n 的任意两个正交变换系数都是不相关的。

       然而,不相关并不意味着独立。但对于多维高斯分布,两个分量的相关性为零,我们就可以判定这两个分量是独立的。问题在于,多个单高斯分布变量的联合分布并不一定是多维高斯分布,所以我们不能直接认为两个不相关的高斯分布变量就是独立的。但是,如果这些高斯分布变量,如 X 1 , X 2 , . . . , X N X_1, X_2, ..., X_N X1,X2,...,XN,的任意线性组合

Y = ∑ i = 1 N c i X i , (1.7) Y = \sum\limits_{i = 1}^N {{c_i}{X_i}} ,\tag{1.7} Y=i=1NciXi,(1.7)

都是一个高斯分布的随机变量,那么它们就是联合高斯的 [1]。注意这里并不要求各个随机变量 X i X_i Xi 的协方差矩阵是非奇异的, c i c_i ci 也不禁止全部为 0,但相应地我们需要认为常量也是属于高斯分布的。那么,因为有限个相互独立的高斯随机变量的线性组合一定是高斯随机变量,所以相互独立的高斯随机变量一定是联合高斯的。

       回到 AWGN 的正交变换,由于每个系数都可以表示为相互独立的高斯随机变量的线性组合,即

T n ( k ) = ∑ i = 0 N − 1 A k , i ⋅ n i . (1.8) T_n^{(k)} = \sum\limits_{i = 0}^{N - 1} {{A_{k,i}} \cdot {n_i}} .\tag{1.8} Tn(k)=i=0N1Ak,ini.(1.8)

那么对于变换系数的任意线性组合,有

Z = ∑ k = 0 N − 1 c k ⋅ T n ( k ) = ∑ k = 0 N − 1 c k ⋅ ∑ i = 0 N − 1 A k , i ⋅ n i = ∑ i = 0 N − 1 ( ∑ k = 0 N − 1 A k , i ⋅ c k ) ⋅ n i = ( A T c ) T n . (1.9) \begin{aligned} Z &= \sum\limits_{k = 0}^{N - 1} {{c_k} \cdot T_n^{(k)}} = \sum\limits_{k = 0}^{N - 1} {{c_k} \cdot \sum\limits_{i = 0}^{N - 1} {{A_{k,i}} \cdot {n_i}} } \\ &= \sum\limits_{i = 0}^{N - 1} {\left( {\sum\limits_{k = 0}^{N - 1} {{A_{k,i}} \cdot {c_k}} } \right) \cdot {n_i}} = {\left( {{{\mathbf{A}}^T}{\mathbf{c}}} \right)^T}{\mathbf{n}}. \\ \end{aligned} \tag{1.9} Z=k=0N1ckTn(k)=k=0N1cki=0N1Ak,ini=i=0N1(k=0N1Ak,ick)ni=(ATc)Tn.(1.9)

因此,即便矩阵 A \bf{A} A 不是正交矩阵, A n \bf{An} An 所得到的高斯随机向量的各个分量也是联合高斯的,因为这些分量的任意线性组合总可以通过左乘矩阵 A \bf{A} A 的转置表示为原始独立高斯随机向量 n \bf{n} n 的线性组合。而对于 AWGN,当矩阵 A \bf{A} A 为正交时,刚好各个分量即变换系数的相关性为零,所以这些分量都是相互独立的。而又由于各个变换系数的分布与原始噪声的分布是一样的,所以我们可以证明 AWGN 经过正交变换后仍然是 AWGN,并且噪声分布与原来一致。对于可分离的正交变换,如二维乃至多维 DCT 等,其相当于先对某一维做正交变换,然后依次对所得的结果做剩下维度的正交变换,因为每一维经过正交变换后的结果依然为 AWGN,所以经过多维正交变换后最终的变换系数同样是 AWGN。

       图 1 展示了均值为零,标准差为 30 高斯白噪声图像,为了便于理解,这里使用了三维作图。由于各个像素之间的噪声分布是相互独立的,所以我们几乎不能在图中找到任何有意义的纹理特征。另外,因为高斯分布两个标准差之内占据了 95.4% 的概率,所以绝大部分的噪声值都在 [-60, 60] 之间。图 2 为 DCT-II 变换的结果,可以看到,其与图 1 即原始噪声信号几乎没有差别,都是一堆杂乱没有规律的数据,并且绝大部分的变换系数同样处在 [-60, 60] 之间。所以,从这个简单的例子也可以证明,高斯白噪声的正交变换系数同样是高斯白噪声。

图1 噪声图像

图2 噪声图像的二维 DCT-II 变换

参考资料:

[1] Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN978-0-521-86470-1. pp. 363-365.

煲机的概述:   指新买回的音响器材得通电一段时间后才会让重放的音质变好。 煲机是一种快速使器材老化稳定的措施。有些元器件例如晶体管、集成电路、电容全新的时候电器参数不稳定,经过一段时间的使用后才能逐渐稳定。对于耳机来说,煲机实际就是在煲振膜折环,新耳机振膜折环机械顺性差,导致失真比较大,经过一段时间使用后,顺性逐渐变好,失真也会逐渐降到正常的水平。 煲机是人为的以非正常使用的方式加速器材进入成熟期的过程,一般是让器材连续工作一定的时间。而未“煲”过或未“煲”够火候儿的音箱和耳机,声音的特点可以用“紧、冷、硬、粗”四个字来形容,而“煲”后的产品则醇和、顺滑、细腻很多,仿佛发酵不全的新酒与陈年佳酿相比一般,它们的“味道”还是大不一样的。 这个“煲”字用得可是形象贴切的紧,意思是要着意伺弄,不宜“炒”、不宜“炸”,更不宜“烧”,而是要文火慢炖,慢功出细活。 新的音响器材呢,就像新车,都有个磨合期。 这里介绍一种比较安全、简单的煲机方法,你就拿着白噪音和粉红噪音轮流播放着煲去吧。 音量要适中,可逐渐加大。 下面这段是转的: 白噪声或粉红噪声之类是自然状态的噪声。之所以叫白噪声,粉红噪声,是由光波的谱线图就是光谱图类比而来,白噪声的特点是各频段的能量均匀(频谱类似太阳光谱即白光光谱),粉红噪声是在低频段强在高频段弱的噪声(频谱图类似偏红的光谱即粉红光谱)。 1: 白噪音white noise 所谓白噪音是指一段声音中的频率分量的功率在整个可听范围(0~20KHZ)内都是均匀的。由于人耳对高频敏感一点这种声音听上去是很吵耳的沙沙声。 2: 粉红噪音pink noise 粉红噪音是自然界最常见的噪音,简单说来,粉红噪音的频率分量功率主要分布在中低频段。粉红噪音从人耳中听到的是平直的频率响应——"非常悦耳的一种噪声"最常用于进行声学测试的声音。 3: 电视机无信号时的背景噪声和调频收音机无台时的背景噪声均是白噪声白噪声可用来测量扬声器和耳机的谐振和灵敏度等。 4: 从波形角度看,粉红噪音是分形的,在一定的范围内音频数据具有相同或类似的能量。粉红噪声的电平从低频向高频不断衰减,其幅度与频率成反比(1/f)。其幅度每倍频程(一个8度)下降3dB。噪声能量在每倍频程内是相等的。 5: 从频谱仪的图形上看,白噪声在全频谱内是一条平直的线。 6: 从频谱仪的图形上看,粉红噪声是在一个小段频谱内平直的线,并且以其倍数频率向下衰减。即1倍频,2倍频……频率越高谱线高度越低。 白噪声是一种无规噪声,它的瞬时值是随机变化的。它的幅值对时间的分布满足正态分布。它具有连续的噪声谱,包含有各种频率成分的噪声。它的功率谱密度与频率无关,几个频率能量的分布是均匀的。它的等带宽输出的能量是相等的。它在线性坐标中,输出是一根平行与横坐标的直线。在对数坐标中,输出是按每倍频程带宽增加3dB的斜率而上升的。 粉红噪声与白噪声一样也是一种无规噪声,也具有连续的噪声谱。不同之处在于,它的功率谱密度与频率成反比,在对数坐标中,起输出为一水平线,在线性坐标中,其输出以每倍频程3dB下降。 在人耳可听的频率范围内,具有相同能量的噪声称为白噪声白噪声广泛用于环境声学测量中。 ===================================分割线================================= 附上wav格式的白噪音 粉红噪音各一个(文件大小:18.7M)
### 回答1: 在 MATLAB 中,小波变换是一种常用的工具,可以用来去除信号中的噪声。其中,哪种小波变换效果最好取决于待处理的信号的性质以及所添加的噪声的特征。对于高斯白噪声,通常可以使用小波基或小波包变换来有效去除噪声。 小波基变换是一种基于小波函数的线性无相关变换,其中小波函数是经过规定时域和频域滤波器设计的一组函数。小波基变换可以有效地去除低频噪声,因此对于高斯白噪声而言,小波基变换是一种不错的选择。 小波包变换是一种类似于小波基变换的无相关变换,其中使用的是小波包函数。小波包函数具有更好的时域和频域分辨率,因此小波包变换在去除噪声方面的效果通常会更好。因此,对于高斯白噪声而言,小波包变换是一种更优的选择。 总的来说,在 MATLAB 中,小波包变换可能会比小波基变换在去除高斯白噪声方面效果更好,但这并不意味着小波基变换就没有用处。在实际应 ### 回答2: 在MATLAB中,小波去除高斯白噪声的效果取决于所选择的小波类型。通常来说,小波去除噪声的效果与小波的性质和特点有关。根据不同的应用需求,可以选择适合的小波类型来去除高斯白噪声。 其中,常用的小波类型包括Daubechies小波、Symlet小波、Coiflet小波、Haar小波等。这些小波类型在去噪处理中有各自的特点和适用范围。 对于高斯白噪声去噪,一般选择具有较好频率局部化和多尺度分析能力的小波类型。在实际应用中,Daubechies小波是一种常用的小波类型,其具有紧支撑、正交性和平滑性等特点,适合用于去除高斯白噪声。 另外,小波去噪时需要注意选择合适的小波阶数或分解层数,以及合理设置阈值值来控制去噪的程度。对于高斯白噪声,可以通过试验不同的小波类型和参数来选择最适合的去噪效果,并根据实际需求进行调整。 总的来说,虽然有许多小波类型可供选择,但不存在一种小波能够在所有情况下都表现出最佳的去噪效果。因此,在MATLAB中选择小波去除高斯白噪声时,需要综合考虑信号特点、噪声类型和应用需求,进行试验和调优,以达到最佳的去噪效果。 ### 回答3: MATLAB中有许多小波函数可以用于去除高斯白噪声,具体哪种小波效果最好取决于数据的特性以及去噪的需求。以下是一些常用的小波函数及其特点: 1. Daubechies小波:Daubechies小波是最常用的小波函数之一,它具有良好的局部化特性,适用于信号的瞬时特性变化较小的情况,如音频信号。 2. Symlets小波:Symlets小波是Daubechies小波的一种变体,适用于信号具有较大瞬时特性变化的情况,如心电信号。 3. Coiflets小波:Coiflets小波是一种突出信号边缘特征的小波函数,适用于信号具有较强变化的情况,如图像边缘。 4. Haar小波:Haar小波是最简单的小波函数,适用于信号具有较强的跳跃式变化的情况,如脑电图信号。 虽然以上小波函数各有特点,但并没有绝对最好的选择。在实际应用中,应根据具体情况选择适合的小波函数和参数设置,同时还可以通过多尺度分析、阈值设定以及重构方法等技术对去噪结果进行优化。此外,去噪效果的评价也取决于具体的指标和标准,不同的评价方法可能会得出不同的结论。因此,选择最适合的小波函数需要结合实际应用需求和具体数据进行综合考虑。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值