RMQ hdu3183 RMQ模板

本文深入探讨了RMQ(Range Minimum Query)算法的基本概念,提供了动态规划构建过程的详细说明,并通过具体实例展示了如何利用RMQ算法解决从数字中删除部分位数以求最小值的问题。文章还包含了一个完整的C++实现示例。
摘要由CSDN通过智能技术生成

基础RMQ模板

dp[i][j]代表从i开始并且包括i的2^j个数字中最小(最大)的值。
构建的过程可以用动态规划完成
dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1])

void rmq_init()
{
    for(int i=1;i<=N;i++) dp[i][0]=arr[i];
    for(int j=1;(1<<j)<=N;j++)
        for(int i=1;i+(1<<j)-1<=N;i++)
            dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}


int query(int l,int r)
{
    int k=log2(r-l+1);
    return min(dp[l][k],dp[r-(1<<k)+1][k]);
}

hdu3183

从一个数字中删去若干位,要求结果最小。
178543 4,从178543中删去4位,最小结果是13。

Sample Input
178543 4
1000001 1
100001 2
12345 2
54321 2

Sample Output
13
1
0
123
321

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = 1024;
int n, m;
char s[maxn], ans[maxn];
int dp[maxn][10];
void rmq_init() {
	for (int i = 1; i <= n; ++i) dp[i][0] = i;
	for (int j = 1; (1 << j) <= n; ++j) 
		for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
			dp[i][j] = s[dp[i][j - 1] - 1] <= s[dp[i + (1 << (j - 1))][j - 1] - 1] ? dp[i][j-1] : 
																	dp[i + (1 << (j - 1))][j-1];
		}
}

int query(int x, int y) {
	int k = log2(y - x + 1);
	return s[dp[x][k] - 1] <= s[dp[y - (1 << k) + 1][k] - 1] ? dp[x][k] : dp[y - (1 << k) + 1][k];
}

int main()
{
	while (scanf("%s%d", s, &m)!=EOF) {
		int k = 1, need, i = 0;
		n = strlen(s);
		rmq_init();
		need = n - m + 1;
		while (--need) {
			k = query(k, n - need + 1);
			ans[i] = s[k - 1];
			++i, ++k;
		}
		for (k = 0; k < i && ans[k] == '0'; ++k);
		if (i == k) printf("0\n");
		else {
			for (; k < i; k++) printf("%c", ans[k]);
			printf("\n");
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值