记录一下基于bitxiong/tsn镜像配置GPU TSN的环境的坑点

TSN现在差不多被SlowFast取代了,但这两天在公司还是在用它抽特征。直接装python-opencv还要额外配置GPU的支持,所以用bitxiong/tsn还是个不错的选择。

这里就列几个坑点,做完这些可以直接调用用GPU抽光流图片的脚本了,但是如果版本驱动对不上,模型还是跑不起来,可能就抽不了特征。但抽特征的代码用pytorch还是很容易写的,不必依赖这套caffe代码。

  1. enable GPUs with docker:docker run --gpus all
  2. 安装openmpi再build_all.sh
  3. GPU算力太高,不匹配
  4. cmd空格改等号,默认文件格式改MP4,路径去掉一层文件夹
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值