Ubuntu做深度学习,安装显卡驱动+CUDA+cudnn+Anaconda+Pycharm方法汇总

本文详细介绍在Ubuntu系统中配置深度学习环境的步骤,包括Anaconda的安装与使用,PyCharm的设置,显卡驱动及CUDA、cuDNN的安装,以及如何通过Anaconda创建虚拟环境安装TensorFlow-GPU和PyTorch。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Anaconda在Ubuntu下的安装与简单使用:

https://blog.csdn.net/m0_37605642/article/details/93660130

Ubuntu配置Pycharm详细步骤:

https://blog.csdn.net/weixin_44003563/article/details/90314232
博主注:sh文件类似于exe文件,但不能直接运行,必须cd到pycharm.sh所在的文件夹,再用sh命令来打开.

Ubuntu安装显卡驱动:

https://blog.csdn.net/xunan003/article/details/81665835

CUDA和cudnn的安装方法(16.04LTS和18.04LTS通用):

https://blog.csdn.net/qq_41931821/article/details/89239388
博主注:成功安装对应版本的显卡驱动+CUDA+cudnn后,就可以用anaconda创建虚拟空间来安装tensorflow-gpu和pytorch了.个人测试tensorflow-gpu和pytorch好像不能兼容,所以就多开辟一个虚拟空间吧,pycharm做什么项目用什么环境就好.

软件安装与apt-get下载软件的存放位置:

https://blog.csdn.net/wdr2003/article/details/80840857

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值