Hive
文章平均质量分 86
JavaEdge.
关注并私信我,获取更多大厂求职经验。《编程严选网》创始人
展开
-
Hive实战(03)-深入了解Hive JDBC:在大数据世界中实现数据交互
在Java应用程序中连接和操作Hive的API。通过使用JDBC,开发人员可以使用标准的SQL查询语言与Hive进行交互,实现数据的读取、写入和操作。通过Hive JDBC,我们能够在Java应用程序中无缝集成Hive,实现对大数据的高效查询和操作。通过合理配置和使用,开发人员可以更轻松地构建基于Hive的数据处理应用程序,为大数据领域的解决方案提供强大支持。希望这篇博客能够为初次接触Hive JDBC的开发人员提供一些实用的技术指导,使其能够更加顺利地在大数据环境中进行数据交互。原创 2023-10-10 10:35:15 · 731 阅读 · 1 评论 -
macOS下 Hive 2.x 的安装与配置
1 简介Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的[SQL]查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种...原创 2019-04-22 15:28:41 · 1058 阅读 · 0 评论 -
Hive 到底有什么用?
开发无需经常编写MapReduce程序,因为网站最主要的大数据处理就是SQL分析,因此Hive很重要。随Hive普及,我们对在Hadoop执行SQL的需求越强,对大数据SQL的应用场景也多样化起来,于是又开发各种大数据SQL引擎。Cloudera开发Impala,运行在HDFS上的MPP架构的SQL引擎。原创 2022-11-27 16:36:21 · 942 阅读 · 2 评论 -
Spark SQL实战(08)-整合Hive
统计每个人爱好的个数* pk:3* 1)定义函数* 2)注册函数* 3)使用函数。原创 2023-03-26 20:04:06 · 1778 阅读 · 5 评论 -
轻松驾驭Hive数仓,数据分析从未如此简单!
先通过SparkSession read API从分布式文件系统创建DataFrame然后,创建临时表并使用SQL或直接使用DataFrame API,进行数据转换、过滤、聚合等操作最后,再用SparkSession的write API把计算结果写回分布式文件系统直接与文件系统交互,仅是Spark SQL数据应用常见case之一。Spark SQL另一典型场景是与Hive集成、构建分布式数仓。数仓,带有主题、聚合层次较高的数据集,承载形式是一系列数据表。数据分析应用很普遍。Hive擅长元数据管理。原创 2023-10-10 10:27:34 · 199 阅读 · 0 评论