文章目录
《A Scalable and Statistically Robust Beam Alignment Technique for Millimeter-Wave Systems》 本文地址: https://ieeexplore.ieee.org/document/8356247
背景
毫米波频段相比于传统的低于6 GHz频段具有更宽的信道带宽,但在毫米波通信中由于严重的传播路径损耗,通信十分具有挑战性。波束对准(Beam Alignmen, BA),即寻找最佳波束形成方向,对于建立稳定的信号传输路径非常重要。
传统的波束对准方案主要是基于分层自适应搜索、交互式搜索和压缩感知(Compressed Sensing, CS)。这些方案存在的缺点如下:
- 效率低:需要基站与每个用户设备之间进行迭代交互,在多用户场景中效率极低
- 鲁棒性差:传统方案对信道动态性的适应能力较差,通常假设瞬时信道在整个探测/测量阶段保持不变(实际中很难满足,由于毫米波的多普勒扩散较大,意味着即使是中等速度,毫米波信道系数也会有显著的时变)
本文提出了一种可扩展且统计鲁棒的波束对准方案。创新点如下:
- 低复杂度波束方向估计:利用伪随机多指纹波束模式,并通过估计接收功率的二阶统计量来识别强传播路径。由此所产生的欠定方程组可通过非负最小二乘(NNLS)求解。
- 系统级的可扩展性:BS定期广播波束模本,UE保持监听状态,所得到的测量值由UE自行收集、处理并识别出最强径。由于不需要BS和每个UE进行交互,因此方案具有高扩展性,且开销和复杂度不会随着活跃用户数量增加而增加。
- 用户专用的波束码本:BS无需知道UE码本,UE可更根据自身硬件约束(RF数量),SNR情况自行产生波束码本。
- 对信道统计变化的鲁棒性:提出方案基于二阶测量(即:平均接收功率,其产生一个信道二阶统计量的估计)而不是信道系数向量的直接测量,对信道变化具有高度鲁棒性。
系统模型
信道模型
- BS和UE均为均匀线阵(ULA)。BS配置有 M M M根天线, m ≪ M m \ll M m≪M根RF链。UE配置有 N N N根天线, n ≪ N n \ll N n≪N根RF链。
- BS和UE的阵列导向矢量分别为: a ( θ ) ∈ C M \mathbf{a}(\theta) \in \mathbb{C}^M a(θ)∈CM和 b ( ϕ ) ∈ C N \mathbf{b}(\phi) \in \mathbb{C}^N b(ϕ)∈CN,其每个元素每分别为:
[ a ( θ ) ] k = e j ( k − 1 ) π sin ( θ ) , k ∈ [ M ] , [ b ( ϕ ) ] l = e j ( l − 1 ) π sin ( ϕ ) , l ∈ [ N ] [\mathbf{a}(\theta)]_k=e^{j(k-1) \pi \sin (\theta)}, \quad k \in[M],[\mathbf{b}(\phi)]_l=e^{j(l-1) \pi \sin (\phi)}, \quad l \in[N] [a(θ)]k=ej(k−1)πsin(θ),k∈[M],[b(ϕ)]l=ej(l−1)πsin(ϕ),l∈[N]
假定BS和UE之间的通信是通过AoA-AoD-时延域中的多径稀疏成分(MPC)组合而成,其在符号时间 s s s处的 N × M N \times M N×M低通等效脉冲响应(假定平坦衰落,且信道带宽 B B B远小于载频 f 0 f_0 f0)可表示为:
H s ( τ ) = ∑ l = 1 L ρ s , l b ( ϕ l ) a ( θ l ) H δ ( τ − τ l ) \mathrm{H}_s(\tau)=\sum_{l=1}^L \rho_{s, l} \mathbf{b}\left(\phi_l\right) \mathrm{a}\left(\theta_l\right)^{\mathrm{H}} \delta\left(\tau-\tau_l\right) Hs(τ)=l=1∑Lρs,lb(ϕl)a(θl)Hδ(τ−τl)
其中, ρ s , l ∼ C N ( 0 , γ l ) \rho_{s, l} \sim \mathcal{C} \mathcal{N}\left(0, \gamma_l\right) ρs,l∼CN(0,γl)是随机信道增益,MPCs满足 L ≪ max { M , N } L \ll \max \{M, N\} L≪max{
M,N}。假定角度相干时间远大于信道相关时间,因此在BA期间AoA-AoD认为是恒定不变。
信号模型
由于基站有 m m m根RF链,其可以发送 m m m个不同的数据流。给定相干时间内的信号时间 t 0 t_0 t0( t 0 < Δ t c t_0<\Delta t_c t0<Δtc), x s , i ( t ) , t ∈ [ s t 0 , ( s + 1 ) t 0 ] x_{s, i}(t), t \in\left[s t_0,(s+1) t_0\right] xs,i(t),t∈[st0,(s+1)t0]表示对应于第 i i i个数据流的连续时间基带等效信号,经过发送端波束成形 u s , i ∈ C M \mathbf{u}_{s, i} \in \mathbb{C}^M us,i∈CM(功率归一化: ∥ u s , i ∥ = 1 \left\|\mathbf{u}_{s, i}\right\|=1 ∥us,i∥=1)后,符号时间 s s s处的系带等效信号可以表示为:
x s ( t ) = ∑ i = 1 m x s , i ( t ) u s , i \mathbf{x}_s(t)=\sum_{i=1}^m x_{s, i}(t) \mathbf{u}_{s, i} xs(t)=i=1∑mxs,i(t)us,i
经过信道后,在UE阵列处的接收信号为: r s ( t ) = ∫ H s ( τ ) x s ( t − τ ) d τ = ∑ l = 1 L ∑ i = 1 m ρ s , l g s , l , i B S x s , i ( t − τ l ) b ( ϕ l ) \mathbf{r}_s(t)=\int \mathrm{H}_s(\tau) \mathbf{x}_s(t-\tau) d \tau=\sum_{l=1}^L \sum_{i=1}^m \rho_{s, l} g_{s, l, i}^{\mathrm{BS}} x_{s, i}\left(t-\tau_l\right) \mathbf{b}\left(\phi_l\right) rs(t)=∫Hs(τ)xs(t−τ)dτ=∑l=1L∑i=1mρs,lgs,l,iBSxs,i(t−τl)b(ϕl),其中 g s , l , i B S : = a ( θ l ) H u s , i g_{s, l, i}^{\mathrm{BS}}:=\mathbf{a}\left(\theta_l\right)^{\mathrm{H}} \mathbf{u}_{s, i} gs,l,iBS:=a(θl)Hus,i表示BS侧第 i i i条RF链在第 l l l条多径的波束成形增益。
经过接收端处理后,在UE侧第 j j j根RF链的输出可以表示为:
y s , j ( t ) = 1 n v s , j H r s ( t ) + z s , j ( t ) = ∑ i = 1 m 1 n ∑ l = 1 L ρ s , l g s , l , i B S g s , l , j U E x s , i ( t − τ l ) + z s , j ( t ) y_{s, j}(t)=\frac{1}{\sqrt{n}} \mathbf{v}_{s, j}^{\mathrm{H}} \mathbf{r}_s(t)+z_{s, j}(t)=\sum_{i=1}^m \frac{1}{\sqrt{n}} \sum_{l=1}^L \rho_{s, l} g_{s, l, i}^{\mathrm{BS}} g_{s, l, j}^{\mathrm{UE}} x_{s, i}\left(t-\tau_l\right)+z_{s, j}(t) ys,j(t)=n1vs,jHrs(t)+zs,j(t)=i=1∑mn1l=1∑Lρs,lgs,l,iBSgs,l,jUExs,i(t−τl)+zs,j(t)
其中 v s , j ∈ C N \mathbf{v}_{s, j} \in \mathbb{C}^N vs,j∈CN表示UE侧第 j j j根RF链的归一化波束成形向量, g s , l , j U E : = v s , j H b ( ϕ l ) g_{s, l, j}^{\mathrm{UE}}:=\mathbf{v}_{s, j}^{\mathrm{H}} \mathbf{b}\left(\phi_l\right) gs,l,jUE:=vs,jHb(ϕl)表示第 j j j根RF链在第 l l l个MPC的波束成形增益。
考虑OFDM系统,载波间隔为 Δ f \Delta f Δf, x s , i ( t ) x_{s, i}(t) xs,i(t)表示一个OFDM符号,子载波数目为 F : = B / Δ f F:=B / \Delta f F:=B/Δf。假定CP长度 τ c p \tau_{\mathrm{cp}} τcp大于信道时延扩展( τ c p ≥ max { τ l } − min { τ l } \tau_{\mathrm{cp}} \geq \max \left\{\tau_l\right\}-\min \left\{\tau_l\right\} τcp≥max{
τl}−min{
τl}),此时,OFDM符号时间 t 0 = 1 / Δ f + τ c p t_0=1 / \Delta f+\tau_{\mathrm{cp}} t0=1/Δf+τcp。对之前的时域信道进行傅里叶变换,符号时间 s s s处的频域信道为:
H ˇ s ( f ) = ∑ l = 1 L ρ s , l b ( ϕ l ) a ( θ l ) H e − j 2 π f τ l \check{\mathrm{H}}_s(f)=\sum_{l=1}^L \rho_{s, l} \mathbf{b}\left(\phi_l\right) \mathbf{a}\left(\theta_l\right)^{\mathrm{H}} e^{-j 2 \pi f \tau_l} Hˇs(f)=l=1∑Lρs,lb(ϕl<