毫米波系统中可扩展且统计鲁棒的波束对准方案

文章介绍了毫米波通信中的一种新波束对准技术,它利用伪随机波束成形码本和接收功率的二阶统计量来识别最佳传播路径,提高了系统效率和鲁棒性。这种方法降低了对信道动态性的依赖,适用于大规模MIMO系统,并且具有良好的扩展性和对信道变化的适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


《A Scalable and Statistically Robust Beam Alignment Technique for Millimeter-Wave Systems》 本文地址: https://ieeexplore.ieee.org/document/8356247

背景

毫米波频段相比于传统的低于6 GHz频段具有更宽的信道带宽,但在毫米波通信中由于严重的传播路径损耗,通信十分具有挑战性。波束对准(Beam Alignmen, BA),即寻找最佳波束形成方向,对于建立稳定的信号传输路径非常重要。

传统的波束对准方案主要是基于分层自适应搜索、交互式搜索和压缩感知(Compressed Sensing, CS)。这些方案存在的缺点如下:

  • 效率低:需要基站与每个用户设备之间进行迭代交互,在多用户场景中效率极低
  • 鲁棒性差:传统方案对信道动态性的适应能力较差,通常假设瞬时信道在整个探测/测量阶段保持不变(实际中很难满足,由于毫米波的多普勒扩散较大,意味着即使是中等速度,毫米波信道系数也会有显著的时变)

本文提出了一种可扩展且统计鲁棒的波束对准方案。创新点如下:

  • 低复杂度波束方向估计:利用伪随机多指纹波束模式,并通过估计接收功率的二阶统计量来识别强传播路径。由此所产生的欠定方程组可通过非负最小二乘(NNLS)求解。
  • 系统级的可扩展性:BS定期广播波束模本,UE保持监听状态,所得到的测量值由UE自行收集、处理并识别出最强径。由于不需要BS和每个UE进行交互,因此方案具有高扩展性,且开销和复杂度不会随着活跃用户数量增加而增加。
  • 用户专用的波束码本:BS无需知道UE码本,UE可更根据自身硬件约束(RF数量),SNR情况自行产生波束码本。
  • 对信道统计变化的鲁棒性:提出方案基于二阶测量(即:平均接收功率,其产生一个信道二阶统计量的估计)而不是信道系数向量的直接测量,对信道变化具有高度鲁棒性。

系统模型

信道模型

  • BS和UE均为均匀线阵(ULA)。BS配置有 M M M根天线, m ≪ M m \ll M mM根RF链。UE配置有 N N N根天线, n ≪ N n \ll N nN根RF链。
  • BS和UE的阵列导向矢量分别为: a ( θ ) ∈ C M \mathbf{a}(\theta) \in \mathbb{C}^M a(θ)CM b ( ϕ ) ∈ C N \mathbf{b}(\phi) \in \mathbb{C}^N b(ϕ)CN,其每个元素每分别为:
    [ a ( θ ) ] k = e j ( k − 1 ) π sin ⁡ ( θ ) , k ∈ [ M ] , [ b ( ϕ ) ] l = e j ( l − 1 ) π sin ⁡ ( ϕ ) , l ∈ [ N ] [\mathbf{a}(\theta)]_k=e^{j(k-1) \pi \sin (\theta)}, \quad k \in[M],[\mathbf{b}(\phi)]_l=e^{j(l-1) \pi \sin (\phi)}, \quad l \in[N] [a(θ)]k=ej(k1)πsin(θ),k[M],[b(ϕ)]l=ej(l1)πsin(ϕ),l[N]

假定BS和UE之间的通信是通过AoA-AoD-时延域中的多径稀疏成分(MPC)组合而成,其在符号时间 s s s处的 N × M N \times M N×M低通等效脉冲响应(假定平坦衰落,且信道带宽 B B B远小于载频 f 0 f_0 f0)可表示为:
H s ( τ ) = ∑ l = 1 L ρ s , l b ( ϕ l ) a ( θ l ) H δ ( τ − τ l ) \mathrm{H}_s(\tau)=\sum_{l=1}^L \rho_{s, l} \mathbf{b}\left(\phi_l\right) \mathrm{a}\left(\theta_l\right)^{\mathrm{H}} \delta\left(\tau-\tau_l\right) Hs(τ)=l=1Lρs,lb(ϕl)a(θl)Hδ(ττl)
其中, ρ s , l ∼ C N ( 0 , γ l ) \rho_{s, l} \sim \mathcal{C} \mathcal{N}\left(0, \gamma_l\right) ρs,lCN(0,γl)是随机信道增益,MPCs满足 L ≪ max ⁡ { M , N } L \ll \max \{M, N\} Lmax{ M,N}假定角度相干时间远大于信道相关时间,因此在BA期间AoA-AoD认为是恒定不变

信号模型

由于基站有 m m m根RF链,其可以发送 m m m个不同的数据流。给定相干时间内的信号时间 t 0 t_0 t0 t 0 < Δ t c t_0<\Delta t_c t0<Δtc), x s , i ( t ) , t ∈ [ s t 0 , ( s + 1 ) t 0 ] x_{s, i}(t), t \in\left[s t_0,(s+1) t_0\right] xs,i(t),t[st0,(s+1)t0]表示对应于第 i i i个数据流的连续时间基带等效信号,经过发送端波束成形 u s , i ∈ C M \mathbf{u}_{s, i} \in \mathbb{C}^M us,iCM(功率归一化: ∥ u s , i ∥ = 1 \left\|\mathbf{u}_{s, i}\right\|=1 us,i=1)后,符号时间 s s s处的系带等效信号可以表示为:
x s ( t ) = ∑ i = 1 m x s , i ( t ) u s , i \mathbf{x}_s(t)=\sum_{i=1}^m x_{s, i}(t) \mathbf{u}_{s, i} xs(t)=i=1mxs,i(t)us,i
经过信道后,在UE阵列处的接收信号为: r s ( t ) = ∫ H s ( τ ) x s ( t − τ ) d τ = ∑ l = 1 L ∑ i = 1 m ρ s , l g s , l , i B S x s , i ( t − τ l ) b ( ϕ l ) \mathbf{r}_s(t)=\int \mathrm{H}_s(\tau) \mathbf{x}_s(t-\tau) d \tau=\sum_{l=1}^L \sum_{i=1}^m \rho_{s, l} g_{s, l, i}^{\mathrm{BS}} x_{s, i}\left(t-\tau_l\right) \mathbf{b}\left(\phi_l\right) rs(t)=Hs(τ)xs(tτ)dτ=l=1Li=1mρs,lgs,l,iBSxs,i(tτl)b(ϕl),其中 g s , l , i B S : = a ( θ l ) H u s , i g_{s, l, i}^{\mathrm{BS}}:=\mathbf{a}\left(\theta_l\right)^{\mathrm{H}} \mathbf{u}_{s, i} gs,l,iBS:=a(θl)Hus,i表示BS侧第 i i i条RF链在第 l l l条多径的波束成形增益。
经过接收端处理后,在UE侧第 j j j根RF链的输出可以表示为:
y s , j ( t ) = 1 n v s , j H r s ( t ) + z s , j ( t ) = ∑ i = 1 m 1 n ∑ l = 1 L ρ s , l g s , l , i B S g s , l , j U E x s , i ( t − τ l ) + z s , j ( t ) y_{s, j}(t)=\frac{1}{\sqrt{n}} \mathbf{v}_{s, j}^{\mathrm{H}} \mathbf{r}_s(t)+z_{s, j}(t)=\sum_{i=1}^m \frac{1}{\sqrt{n}} \sum_{l=1}^L \rho_{s, l} g_{s, l, i}^{\mathrm{BS}} g_{s, l, j}^{\mathrm{UE}} x_{s, i}\left(t-\tau_l\right)+z_{s, j}(t) ys,j(t)=n 1vs,jHrs(t)+zs,j(t)=i=1mn 1l=1Lρs,lgs,l,iBSgs,l,jUExs,i(tτl)+zs,j(t)
其中 v s , j ∈ C N \mathbf{v}_{s, j} \in \mathbb{C}^N vs,jCN表示UE侧第 j j j根RF链的归一化波束成形向量, g s , l , j U E : = v s , j H b ( ϕ l ) g_{s, l, j}^{\mathrm{UE}}:=\mathbf{v}_{s, j}^{\mathrm{H}} \mathbf{b}\left(\phi_l\right) gs,l,jUE:=vs,jHb(ϕl)表示第 j j j根RF链在第 l l l个MPC的波束成形增益。

考虑OFDM系统,载波间隔为 Δ f \Delta f Δf x s , i ( t ) x_{s, i}(t) xs,i(t)表示一个OFDM符号,子载波数目为 F : = B / Δ f F:=B / \Delta f F:=Bf。假定CP长度 τ c p \tau_{\mathrm{cp}} τcp大于信道时延扩展( τ c p ≥ max ⁡ { τ l } − min ⁡ { τ l } \tau_{\mathrm{cp}} \geq \max \left\{\tau_l\right\}-\min \left\{\tau_l\right\} τcpmax{ τl}min{ τl}),此时,OFDM符号时间 t 0 = 1 / Δ f + τ c p t_0=1 / \Delta f+\tau_{\mathrm{cp}} t0=1/Δf+τcp。对之前的时域信道进行傅里叶变换,符号时间 s s s处的频域信道为:
H ˇ s ( f ) = ∑ l = 1 L ρ s , l b ( ϕ l ) a ( θ l ) H e − j 2 π f τ l \check{\mathrm{H}}_s(f)=\sum_{l=1}^L \rho_{s, l} \mathbf{b}\left(\phi_l\right) \mathbf{a}\left(\theta_l\right)^{\mathrm{H}} e^{-j 2 \pi f \tau_l} Hˇs(f)=l=1Lρs,lb(ϕl<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值