《Fractional Programming for Communication Systems—Part I: Power Control and Beamforming》
本文地址:https://arxiv.org/abs/1802.10192
前言
该文章为对上述论文的阅读笔记,一点戳见,不吝赐教。
FP背景
FP是一类包含比例项的优化问题,经济学、管理学、信息科学、光学、图论和计算机科学等广泛领域都对它进行了广泛的研究。
本文档是目的是将FP的应用扩展到通信系统设计中更广泛的优化问题,特别是功率控制、波束形成和用户调度等通常不能直接用比例形式表示的优化问题。
通常关注的是数据速率计算为 log ( 1 + SINR ) \text{log}(1 + \text{SINR}) log(1+SINR)的通信系统,SINR表示的是信干噪比(signal-to-interference-plus-noise ratio)。SINR在通信系统中的突出作用使得FP是网络设计和优化的宝贵工具,整个讨论集中在无线蜂窝网络,但它可以很容易地适应许多其他网络(例如,光网络或数字用户线路)。
- 为何依然要研究FP问题在无线蜂窝网络的应用?
尽管存在大多数关于FP的工作,但大多数工作是针对的单比问题(single-ratio)问题。而少数研究多比问题的工作(mltiple-ratio)的工作,它们又被限定在特定的形式(如,max-min问题)。而对于系统级通信网络设计,通常不得不应对多比问题,因为整个系统的性能通常是来自多个干扰链路的多个分数阶参数(如SINRs)的函数。求解多比的FP问题,是一个NP-hard问题,找到一个全局最优解十分耗费时间,甚至不可承担。对于求多比问题的驻点解,已知的方法只有连续凸逼近等通用方法。因此研究针对多比问题的FP十分有意义。
FP问题形式
给定一个非空约束集合( d ∈ N d \in \mathbb{N} d∈N,即: d d d为严格的正整数): X ⊆ R d \mathcal{X} \subseteq \mathbb{R}^{d} X⊆Rd,一个非负函数: A ( x ) : R d → R + A(\mathbf{x}):\mathbb{R}^{d} \rightarrow \mathbb{R}_{+} A(x):Rd→R+,一个正函数: B ( x ) : R d → R + + B(\mathbf{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}_{++} B(x):Rd→R++,一个单比问题(maximizing)可以表示为:
maximize x A ( x ) B ( x ) subject to x ∈ X \begin{array}{ll} \underset{\mathrm{x}}{\operatorname{maximize}} & \frac{A(\mathrm{x})}{B(\mathrm{x})} \\ \text { subject to } & \mathrm{x} \in \mathcal{X} \end{array} xmaximize subject to B(x)A(x)x∈X
上述的单比问题通常是非凸的。传统的FP方法通常是把该单比形式转化为分子分母解耦的形式,联合优化 A ( x ) A(\mathbf{x}) A(x)和 B ( x ) B(\mathbf{x}) B(x),特别是对于: A ( x ) A(\mathbf{x}) A(x)为凸函数, B ( x ) B(\mathbf{x}) B(x)为凹函数, X \mathcal{X} X为凸集的形式,称为concave-convex FP问题。
经典的FP技术
1.Charnes-Cooper Transform
引入一个新的变量:
z = 1 B ( x ) a n d q = x B ( x ) z=\frac{1}{B(\mathrm{x})} \quad and \quad \mathbf{q}=\frac{\mathbf{x}}{B(\mathbf{x})} z=B(x)1andq=B(x)x
单比问题变为:
maximize z , q z A ( q z ) subject to z B ( q z ) ≤ 1 z ∈ Z q ∈ Q \begin{array}{ll} \underset{z, \mathbf{q}}{\operatorname{maximize}} & z A\left(\frac{\mathbf{q}}{z}\right) \\ \text { subject to } & z B\left(\frac{\mathbf{q}}{z}\right) \leq 1 \\ & z \in \mathcal{Z} \\ & \mathbf{q} \in \mathcal{Q} \end{array} z,qmaximize subject to zA(zq)zB(zq)≤1z∈Zq∈Q
其中, Z \mathcal{Z} Z和 Q \mathcal{Q} Q分别是 z z z和 q \mathbf{q} q的范围,且 x ∈ X \mathrm{x} \in \mathcal{X} x∈X原始的解 x \mathbf{x} x可以由 z z z和 q \mathbf{q} q恢复。
注意,这种方法通过将 B ( x ) B(\mathbf{x}) B(x)移动到约束 z B ( q z ) ≤ 1 z B\left(\frac{\mathbf{q}}{z}\right) \leq 1 zB(zq)≤1,而将 A ( x ) A(\mathbf{x}) A(x)留在目标中来解耦分母和分子。如果原始问题是concave-convex FP问题,那么通过该转换构造的凸问题可以被很好的解决。
针对Charnes-Cooper Transform需要注意的两个点:
- 引入了额外的约束
- Z \mathcal{Z} Z和 Q \mathcal{Q} Q需要表征出来,这可能不容易做到
该方法对于单比问题可以很好的解决,对于oncave-convex 单比FP问题事实上还能够收敛到全局最优。但拓展到多比问题(sum-of-ratios 问题)是十分困难的。
2.Dinkelbach’s Transform
该方法将单比问题转化为:
maximize x A ( x ) − y B ( x ) subject to x ∈ X \begin{array}{ll} \underset{\mathrm{x}}{\operatorname{maximize}} & A(\mathrm{x})-y B(\mathrm{x}) \\ \text { subject to } & \mathrm{x} \in \mathcal{X} \end{array} xmaximize subject to A(x)−yB(x)x∈X
用一个新的辅助变量 y y y进行迭代更新,具体表示为:
y [ t + 1 ] = A ( x [ t ] ) B ( x [ t ] ) y[t+1]=\frac{A(\mathbf{x}[t])}{B(\mathbf{x}[t])} y[t+1]=B(x[t])A(x[t])
其中, t t t是迭代的index。可以证明,通过交替更新 y y y和求解转换后的单比问题中的 x \mathbf{x} x可以证明收敛性是有保证的,因为y在每次迭代后都是非递减的。
该方法同样对于单比问题可以很好的解决,对于concave-convex 单比FP问题,固定 y y y优化 x \mathbf{x} x是一个凸问题,其能够收敛到原始单比问题的全局最优。
Dinkelbach’s Transform相较于Charnes-Cooper Transform没有额外的约束被引入。
一种新的变换方法:二次变换(Quadratic Transform)
利用这种二次变换,希望新的函数有一些性质:
- C1(Decoupling):新的目标函数具有如下的形式: g ( x , y ) = f ( A ( x ) ) q 1 ( y ) + h ( B ( x ) ) q 2 ( y ) g(\mathbf{x}, y)=f(A(\mathbf{x})) q_{1}(y)+h(B(\mathbf{x})) q_{2}(y) g(x,y)=f(A(x))q1(y)+h(B(x))q2(y)。
- C2(Equivalent Solution):当且仅当 x ⋆ \mathbf{x}^{\star} x⋆和 y ⋆ y^{\star} y⋆最大化 g ( x , y ) g(\mathbf{x}, y) g(x,y)时, x ⋆ \mathbf{x}^{\star} x⋆最大化 A ( x ) / B ( x ) A(\mathbf{x}) / B(\mathbf{x}) A(x)/B(x)。
- C3(Equivalent Objective):对于某个 x \mathbf{x} x,让 y ⋆ = arg max y g ( x , y ) y^{\star}=\arg \max _{y} g(\mathbf{x}, y) y⋆=argmaxyg(x,y),然后对于该 x \mathbf{x} x有 g ( x , y ⋆ ) = A ( x ) / B ( x ) g\left(\mathbf{x}, y^{\star}\right)=A(\mathbf{x}) / B(\mathbf{x}) g(x,y⋆)=A(x)/B(x)。
- C4(Concavity):对于固定的 x \mathbf{x} x, g ( x , y ) g(\mathbf{x}, y) g(x,y)关于 y y y是凹的,即: ∂ 2 g / ∂ y 2 ≤ 0 \partial^{2} g / \partial y^{2} \leq 0 ∂2g/∂y2≤0
理论1(Quadratic Transform)
二次转换:
g ( x , y ) = 2 y A ( x ) − y 2 B ( x ) g(\mathrm{x}, y)=2 y \sqrt{A(\mathrm{x})}-y^{2} B(\mathrm{x}) g(x,y)=2yA(x)−y2B(x)
满足:C1-C4。进一步地,如果C4被加强,其要求: ∂ 2 g / ∂ y 2 \partial^{2} g / \partial y^{2} ∂2g/∂y2是独立于 y y y的,则任何一个满足C1-C4的 g ( x , y ) g(\mathrm{x}, y) g(x,y)必须满足如下形式:
g ( x , y ) = 2 ( t 1 y + t 2 ) A ( x ) − ( t 1 y + t 2 ) 2 B ( x ) g(\mathrm{x}, y)=2\left(t_{1} y+t_{2}\right) \sqrt{A(\mathrm{x})}-\left(t_{1} y+t_{2}\right)^{2} B(\mathrm{x}) g(x,y)=2(t1y+t2)A(x)−(t1y+t2)2B(x)
对于多比FP问题的二次转化:
sum-of-ratios问题表示为:
maximize x ∑ m = 1 M A m ( x ) B m ( x ) subject to x ∈ X \begin{array}{ll} \underset{\mathbf{x}}{\operatorname{maximize}} & \sum_{m=1}^{M} \frac{A_{m}(\mathbf{x})}{B_{m}(\mathbf{x})} \\ \text { subject to } & \mathbf{x} \in \mathcal{X} \end{array} xmaximize subject to ∑m=1MBm(x)Am(x)x∈X
注:此时如果强行直接将Dinkelbach’s Transform应用到多比问题,对于原始多比问题是不能够保证等价性的。
应用理论1可以将单比问题很容易的推广到多比问题,并且由于C3的性质可以很好地保证等价性
- 推论1:
sum-of-ratios问题等价于:
maximize x , y ∑ m = 1 M ( 2 y m A m ( x ) − y m 2 B m ( x ) ) subject to x ∈ X , y m ∈ R \begin{array}{ll} \underset{\mathbf{x}, \mathbf{y}}{\operatorname{maximize}} & \sum_{m=1}^{M}\left(2 y_{m} \sqrt{A_{m}(\mathbf{x})}-y_{m}^{2} B_{m}(\mathbf{x})\right) \\ \text { subject to } & \mathbf{x} \in \mathcal{X}, y_{m} \in \mathbb{R} \end{array} x,ymaximize subject to ∑m=1M(2ymAm(x)−ym2Bm(x))x∈X,ym∈R
y \mathbf{y} y表示变量 { y 1 , … , y M } \left\{y_{1}, \ldots, y_{M}\right\} { y1,…,yM}的集合。
推广为更一般的sum-of-ratios问题和max-min-ratio问题,具体如下:
- 推论2:
给定一个非递减函数,以及一系列的 A m / B m A_{m} / B_{m} Am/Bm( m = 1 , . . . , M m=1,...,M m=1,...,M),sum-of-functions-of-ratio问题可以表示为:
maximize x ∑ m = 1 M f m ( A m ( x ) B m ( x ) ) subject to x ∈ X \begin{aligned} &\operatorname{maximize}_{\mathbf{x}} \sum_{m=1}^{M} f_{m}\left(\frac{A_{m}(\mathbf{x})}{B_{m}(\mathbf{x})}\right)\\ &\text { subject to } \quad x \in \mathcal{X} \end{aligned} maximizexm=1∑Mfm(Bm(x)Am(x)) subject to x∈X
其等价为:
maximize x , y ∑ m = 1 M f m ( 2 y m A m ( x ) − y m 2 B m ( x ) ) subject to x ∈ X , y m ∈ R , m = 1 , … , M \begin{array}{ll} \underset{\mathbf{x}, \mathbf{y}}{\operatorname{maximize}} & \sum_{m=1}^{M} f_{m}\left(2 y_{m} \sqrt{A_{m}(\mathbf{x})}-y_{m}^{2} B_{m}(\mathbf{x})\right) \\ \text { subject to } & \mathbf{x} \in \mathcal{X}, y_{m} \in \mathbb{R}, m=1, \ldots, M \end{array} x,ymaximize subject to ∑m=1Mfm(2ymAm(x)−ym2Bm(x))x∈X,ym∈R,m=1,…,M
- 推论3:
给定一系列的 A m / B m A_{m} / B_{m} Am/Bm( m = 1 , . . . , M m=1,...,M m=1,...,M),max-min-ratio问题可以表示为:
maximize x min m { A m ( x ) B m ( x ) } subject to x ∈ X \begin{array}{ll} \underset{\mathbf{x}}{\operatorname{maximize}} & \min _{m}\left\{\frac{A_{m}(\mathbf{x})}{B_{m}(\mathbf{x})}\right\} \\ \text { subject to } & \mathbf{x} \in \mathcal{X} \end{array} xmaximize subject to minm{ Bm(x)Am(x)}x∈X
其等价为:
maximize x , y , z z subject to x ∈ X , y m ∈ R , z ∈ R 2 y m A m ( x ) − y m 2 B m ( x ) ≥ z , ∀ m \begin{array}{ll} \underset{\mathrm{x}, \mathrm{y}, z}{\operatorname{maximize}} & z \\ \text { subject to } & \mathrm{x} \in \mathcal{X}, y_{m} \in \mathbb{R}, z \in \mathbb{R} \\ & 2 y_{m} \sqrt{A_{m}(\mathrm{x})}-y_{m}^{2} B_{m}(\mathrm{x}) \geq z, \forall m \end{array} x,y,zmaximize subject to zx∈X,ym∈R,z∈R2ymAm(x)−ym2Bm(x)≥z,∀m
证明思路:首先将原问题写为最大化 z z z约束条件为: x ∈ X x \in \mathcal{X} x∈X和 z ≤ A m ( x ) / B m ( x ) z \leq A_{m}(\mathbf{x}) / B_{m}(\mathbf{x}) z≤Am(x)/Bm(x)。根据C3,最后一个约束条件可以写为: z ≤ max y m ( 2 y m A m ( x ) − y m 2 B m ( x ) ) z \leq \max _{y_{m}}\left(2 y_{m} \sqrt{A_{m}(\mathbf{x})}-y_{m}^{2} B_{m}(\mathbf{x})\right) z≤maxym(2ymAm(x)−ym2Bm(x)),由于这个新的约束是一个less-than-max不等式,那么 max y m \max _{y_{m}} maxym可以退化为 max x , y \max _{\mathbf{x}, \mathbf{y}} maxx,y
C3在等价问题转化中扮演了一个重要的角色!
理论2(多维Quadratic Transform)
进一步考虑分子为向量,分母为矩阵的多维复数情况下的FP。这类FP是在处理多天线通信系统时产生的。考虑一系列函数: a m ( x ) : C d 1 → C d 2 \mathbf{a}_{m}(\mathbf{x}): \mathbb{C}^{d_{1}} \rightarrow \mathbb{C}^{d_{2}} am(x):Cd1→Cd2和 B m ( x ) : C d 1 → S + + d 2 × d 2 \mathbf{B}_{m}(\mathbf{x}): \mathbb{C}^{d_{1}} \rightarrow \mathbf{S}_{++}^{d_{2} \times d_{2}} Bm(x):Cd1→S++d2×d2( m = 1 , . . . , M m=1,...,M m=1,...,M),约束集为: X ⊆ C d 1 \mathcal{X} \subseteq \mathbb{C}^{d_{1}} X⊆Cd1且 d 1 , d 2 ∈ N d_{1}, d_{2} \in \mathbb{N} d1,d2∈N,多维单比FP问题定义为:
maximize x ∑ m = 1 M a m † ( x ) B m − 1 ( x ) a m ( x ) subject to x ∈ X \begin{aligned} &\underset{\mathbf{x}}{\operatorname{maximize}} \sum_{m=1}^{M} \mathbf{a}_{m}^{\dagger}(\mathbf{x}) \mathbf{B}_{m}^{-1}(\mathbf{x}) \mathbf{a}_{m}(\mathbf{x})\\ &\text { subject to } \quad x \in \mathcal{X} \end{aligned} xmaximizem=1∑Mam†(x)Bm−1(x)am(x) subject to x∈X
该问题等价为:
maximize x , y ∑ m = 1 M ( 2 Re { y m † a m ( x ) } − y m † B m ( x ) y m ) subject to x ∈ X , y m ∈ C d 2 \begin{array}{ll} \underset{\mathbf{x}, \mathbf{y}}{\operatorname{maximize}} & \sum_{m=1}^{M}\left(2 \operatorname{Re}\left\{\mathbf{y}_{m}^{\dagger} \mathbf{a}_{m}(\mathbf{x})\right\}-\mathbf{y}_{m}^{\dagger} \mathbf{B}_{m}(\mathbf{x}) \mathbf{y}_{m}\right) \\ \text { subject to } & \mathbf{x} \in \mathcal{X}, \mathbf{y}_{m} \in \mathbb{C}^{d_{2}} \end{array} x,ymaximize subject to ∑m=1M(2Re{
ym†am(x)}−ym†Bm(x)ym)x∈X,ym∈Cd2
y \mathbf{y} y表示变量 { y 1 , … , y M } \left\{y_{1}, \ldots, y_{M}\right\} {
y1,…,yM}的集合。
简单的证明思路:将新的等价问题重新表示为 y m † a m + a m † y m − y m † B m y m \mathbf{y}_{m}^{\dagger} \mathbf{a}_{m}+\mathbf{a}_{m}^{\dagger} \mathbf{y}_{m}-\mathbf{y}_{m}^{\dagger} \mathbf{B}_{m} \mathbf{y}_{m} ym†am+am†ym−ym†Bmym,进一步可以写为: a m † B m − 1 a m − ( y m † − a m † B m − 1 ) B m ( y m − B m − 1 a m ) {\mathbf{a}}_m^\dag {\mathbf{B}}_m^{ - 1}{ {\mathbf{a}}_m} - \left( { {\mathbf{y}}_m^\dag - {\mathbf{a}}_m^\dag {\mathbf{B}}_m^{ - 1}} \right){ {\mathbf{B}}_m}\left( { { {\mathbf{y}}_m} - {\mathbf{B}}_m^{ - 1}{ {\mathbf{a}}_m}} \right) am†Bm−1am−(ym†−am†Bm−1)Bm(ym−Bm−1am)(原文有笔误!),可以很容易的看出其最优解为 y m 1 ⋆ = B m − 1 ( x ) a m ( x ) \mathbf{y}_{m_{1}}^{\star}=\mathbf{B}_{m}^{-1}(\mathbf{x}) \mathbf{a}_{m}(\mathbf{x}) ym1⋆=Bm−1(x)am(x),此时其最优值恰好就是 a m † B m − 1 a m \mathbf{a}_{m}^{\dagger} \mathbf{B}_{m}^{-1} \mathbf{a}_{m} am†Bm−1am,因此等价性被建立。
对于Concave-Convex FP问题的迭代优化:
之前讨论是假设分子非负,分母为正,现在讨论特殊类型的Concave-Convex FP问题,其在通信系统设计中尤为重要。
满足Concave-Convex FP问题需要如下条件:
- 分母 A m ( x ) A_{m}(\mathrm{x}) Am(x)均为凹函数
- 分子 B m ( x ) B_{m}(\mathrm{x}) Bm(x)均为凸函数
- 约束集 X \mathcal{X} X是由有限个不等式约束表示的标准形式的非空凸集
对于single-ratio concave-convex FP问题,前面的几种转化都可以很好地解决。现在主要关注multiple-ratio concaveconvex FP 问题。为了说明问题,以标量形式为例,同样可以更根据理论2很容易地拓展到多维形式。
考虑sum-of-ratios、sum-of-functions-of-ratio、max-min-ratio问题。同时假设,每个 A m ( x ) A_{m}(\mathrm{x}) Am(x)是凹的,每个 B m ( x ) B_{m}(\mathrm{x}) Bm(x)是凸的, X \mathcal{X} X是具有标准形式的凸集。假设函数 f m ( ⋅ ) f_{m}(\cdot) fm(⋅)是非递减的。应用二次转换,交替迭代优化原始变量 B m ( x ) B_{m}(\mathrm{x}) Bm(x)和辅助变量 y m y_{m} ym。
当 x \mathrm{x} x固定时,最优 y m y_{m} ym存在闭式解:
y m ⋆ = A m ( x ) B m ( x ) , ∀ m = 1 , … , M y_{m}^{\star}=\frac{\sqrt{A_{m}(\mathrm{x})}}{B_{m}(\mathrm{x})}, \forall m=1, \ldots, M ym⋆=Bm(x)Am(x),∀m=1,…,M
当 y m y_{m} ym固定时,由于每个 A m ( x ) A_{m}(\mathrm{x}) Am(x)的凹性,每个 B m ( x ) B_{m}(\mathrm{x}) Bm(x)的凸性,以及平方根函数是凹的并且是递增的,二次变化函数:
g ( x , y m ) = 2 y m A m ( x ) − y m 2 B m ( x ) g\left(\mathrm{x}, y_{m}\right)=2 y_{m} \sqrt{A_{m}(\mathrm{x})}-y_{m}^{2} B_{m}(\mathrm{x}) g(x,ym)=2ymAm(x)−ym2Bm(x)
对于固定 y m y_{m} ym时的 x \mathrm{x} x是凸的。进一步,由于 f m ( ⋅ ) f_{m}(\cdot) fm(⋅)是凸的且非递减,因此 f m ( g ( x , y m ) ) f_{m}\left(g\left(\mathbf{x}, y_{m}\right)\right) fm(g(x,ym))对于 x \mathrm{x} x是凸的。因此,通过数值凸优化可以有效地得到最优 x \mathrm{x} x。
整个算法总结为:
算法1是能够保证concave-convex FP收敛到一个驻点的。
理论3:收敛性证明(驻点)
对于concave-convex sum-of-functions-of-ratio问题,即:每个 A m ( x ) A_{m}(\mathrm{x}) Am(x)是凹的,每个 B m ( x ) B_{m}(\mathrm{x}) Bm(x)是凸的, X \mathcal{X} X是具有标准形式的凸集,函数 f m ( ⋅ ) f_{m}(\cdot) fm(⋅)是非递减的凸函数。算法1包含了一些列的凸优化问题,其可以收敛到原始sum-of-functions-of-ratio问题的一个驻点,且每次迭代的都是非减的。
证明:算法1本质上是重新表述问题的块坐标上升算法(block coordinate ascent algorithm),因此其可以收敛到二次转换后的函数的一个驻点。由于解的等价性(C2)和目标函数值的等价性(C3),在最优 y ⋆ \mathbf{y}^{\star} y⋆下,二次问题和原始的问题是等价的。因此,算法能够收敛到原始问题的一个驻点,而C3则又保证了sum-of-functions-of-ratio 的值是非递减的。
文中证明了:关于可微 A ( x ) , B ( x ) A(\mathbf{x}), B(\mathbf{x}) A(x),B(x)的单比问题和max-min-ratio concave-convex FP问题,算法1是可以收敛到一个全局最优。
- 关于收敛速度
文中给了一个具体的单比问题,
maximize x