中国剩余定理的简单应用之生理周期

                                                                                                       POJ2977 生理周期
时间限制:
1000ms
内存限制:
65536kB
描述
人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,人会在相应的方面表现出色。例如,智力周期的高峰,人会思维敏捷,精力容易高度集中。因为三个周期的周长不同,所以通常三个周期的高峰不会落在同一天。对于每个人,我们想知道何时三个高峰落在同一天。对于每个周期,我们会给出从当前年份的第一天开始,到出现高峰的天数(不一定是第一次高峰出现的时间)。你的任务是给定一个从当年第一天开始数的天数,输出从给定时间开始(不包括给定时间)下一次三个高峰落在同一天的时间(距给定时间的天数)。例如:给定时间为10,下次出现三个高峰同天的时间是12,则输出2(注意这里不是3)。
输入
输入四个整数:p, e, i和d。 p, e, i分别表示体力、情感和智力高峰出现的时间(时间从当年的第一天开始计算)。d是给定的时间,可能小于p, e, 或 i。 所有给定时间是非负的并且小于365, 所求的时间小于21252。
输出
从给定时间起,下一次三个高峰同天的时间(距离给定时间的天数)。
样例输入
0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1
样例输出
Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.

1.前提知识

1.  扩展欧几里得算法

我们都知道,欧几里得算法通过辗转相除法找到了求最大公约数的算法,而扩展欧几里得算法所求的是不定方程ax+by=gcd(a,b)的一组解。它的原理和欧几里得算法的思想很类似。

因为gcd(a,b)=gcd(b,a%b)

所以ax+by=bx1+(a%b)y1

所以ax+by=bx1+(a-[a/b]b)y1    [ ]为取整

整理可得

  x=y1

        y=x1-y1[a/b]

所以我们可以利用递归来计算

2.      同余定理

这道题主要需要同余的加和同余的乘

a+b≡x+mmod d

其中 a≡x (mod d)b≡m(mod d)

a*b≡x*m(mod d )

其中a≡x (mod d),b≡m (mod d)

3.中国剩余定理

中国剩余定理是用来计算一次同余方程组,我们可以通过韩信点兵的故事来了解这一问题。

秦朝末年,楚汉相争。一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。交战不久,楚军大败而逃

而在一千多年前的《孙子算经》中,有这样一道算术题:
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.

这两个问题是一样的,这个就是解同余方程组的问题了。我们可以利用同余的加性,来构造方程组的解。

令a=2(mod3),a=0(mod)5,a=0(mod7);

    b=0(mod3),b=3(mod5),b=0(mod7);

    c=0(mod3),b=0(mod5),c=2(mod7);

所以我们可以利用同余的加性构造出方程的解

a=5*7;

b=7*3*3;

c=3*5*2;

ans=a+b+c-3*5*7*k(k为整数)

除了上面这个方法,我们还可以利用同余的乘性

a'=1(mod3)

a'=0(mod5)

a'=0(mod7)

a'=70;

同理

b'=21;c'=15;

ans=2a’+3 b'+  2c'  +3*5*7*k(k为整数)。

2.利用中国剩余定理求解

了解了这些知识,我们来分析这道题。很明显我们可以得出

(x-p) % 23 = 0 
(x-e) % 28 = 0 
(x-i) % 33 = 0 

我们可以得出关于x的同余方程组。

X=p(mod23)

X=e(mod28)

X=i(mod33)

我们求出一个特解,利用23*28*33*t(t为任意整数)来调整解的范围,使得解在[d+1,21252]这个区间内最小。

对于这道题,我们需要a=23*28,b=28*33,c=23*33,利用同余的加性找到

ax=1(mod)33

bx=1(mod)23

cx=1(mod)28

根据同余的乘性

我们可以得到res=ax*i+bx*p+cx*e;

此时的res就是一个特解。

关于怎么解x的值我们可以利用前面所说的扩展欧几里得算法

怎么找x呢?
有重要条件:两两互质
a和33也互质

gcd(a,33)=1;

所以ax0+33*y0=1

两边同时模33,ax=1(mod33),通过对比我们可以发现,x0=x

所以可以通过扩展欧几里得算法来求出x0。

#include <iostream>
using namespace std;
void Egcd (int a, int b, int &x, int &y)  //扩展欧几里得 
{
	if (b == 0)
	{
		x = 1, y = 0;
		return ;
	}
	Egcd (b, a%b, x, y);
	int temp = x;
	x = y;
	y = temp - a/b*y;
}
int CRT (int n[], int b[], int ni)
{
	int ans = 0, x, y, i;
	for (i = 0; i < 3; i++)
	{
		int a = ni / n[i];
		Egcd (a, n[i], x, y); 
		ans += a * x * b[i];  
	}       
	return ans;
}
int main()
{
	int n[3] = {23, 28, 33}, b[3], i, date, k = 1, x0;
	while (1)
	{
		for (i = 0; i < 3; i++)
		scanf ("%d", b[i]);
		scanf ("%d", &date);
		if (date == -1)
		break;
		x0 = (CRT (n, b, 21252) - date) % 21252;
		if (x0 <= 0)
		x0 += 21252;
		printf ("Case %d: the next triple peak occurs in %d days.\n", k++, x0);
	}
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值