evpn route抓包

EVPN路由的种类比较多,每个类型抓一个包在此留存,以备不时之需。
与君共勉。
每种EVPN路由的具体作用及工作方式可以参见VXLAN专栏中其它文章。

Type1

当各网关设备之间的BGP EVPN邻居关系建立成功后,网关设备之间会传递以太自动发现路由。以太自动发现路由可以向其他网关通告本端网关对接入站点的MAC地址的可达性,即网关对连接的站点是否可达。其中,Ethernet Auto-Discovery Per ES路由主要用于ESI多活场景中的快速收敛和水平分割,Ethernet Auto-Discovery Per EVI路由主要用于ESI多活场景中的别名。
在这里插入图片描述

type1-per esi

在这里插入图片描述type1-per esi

type1-per evi

type1 -er evi

Type2

该类型路由在VXLAN控制平面中的作用包括:
主机MAC地址通告
要实现同子网主机的二层互访,两端VTEP需要相互学习主机MAC。作为BGP EVPN对等体的VTEP之间通过交换MAC/IP路由,可以相互通告已经获取到的主机MAC。其中,MAC Address字段为主机MAC地址。
主机ARP通告
MAC/IP路由可以同时携带主机MAC地址+主机IP地址,因此该路由可以用来在VTEP之间传递主机ARP表项,实现主机ARP通告。其中,MAC Address字段为主机MAC地址,IP Address字段为主机IP地址。此时的MAC/IP路由也称为ARP类型路由。主机ARP通告主要用于以下两种场景:
ARP广播抑制。当三层网关学习到其子网下的主机ARP时,生成主机信息(包含主机IP地址、主机MAC地址、二层VNI、网关VTEP IP地址),然后通过传递ARP类型路由将主机信息同步到二层网关上。这样当二层网关再收到ARP请求时,先查找是否存在目的IP地址对应的主机信息,如果存在,则直接将ARP请求报文中的广播MAC地址替换为目的单播MAC地址,实现广播变单播,达到ARP广播抑制的目的。
分布式网关场景下的虚拟机迁移。当一台虚拟机从当前网关迁移到另一个网关下之后,新网关学习到该虚拟机的ARP(一般通过虚拟机发送免费ARP实现),并生成主机信息(包含主机IP地址、主机MAC地址、二层VNI、网关VTEP IP地址),然后通过传递ARP类型路由将主机信息发送给虚拟机的原网关。原网关收到后,感知到虚拟机的位置发生变化,触发ARP探测,当探测不到原位置的虚拟机时,撤销原位置虚拟机的ARP和主机路由。
主机IP路由通告
在分布式网关场景中,要实现跨子网主机的三层互访,两端VTEP(作为三层网关)需要互相学习主机IP路由。作为BGP EVPN对等体的VTEP之间通过交换MAC/IP路由,可以相互通告已经获取到的主机IP路由。其中,IP Address字段为主机IP路由的目的地址,同时MPLS Label2字段必须携带三层VNI。此时的MAC/IP路由也称为IRB(Integrated Routing and Bridge)类型路由。
在这里插入图片描述
在这里插入图片描述

Type3

该类型路由在VXLAN控制平面中主要用于VTEP的自动发现和VXLAN隧道的动态建立。作为BGP EVPN对等体的VTEP,通过Inclusive Multicast路由互相传递二层VNI和VTEP IP地址信息。其中,Originating Router’s IP Address字段为本端VTEP IP地址,MPLS Label字段为二层VNI。如果对端VTEP IP地址是三层路由可达的,则建立一条到对端的VXLAN隧道。同时,本端会创建一个基于VNI的头端复制表并将对端VTEP IP地址加入其中,用于后续BUM报文转发。
在这里插入图片描述

在这里插入图片描述

Type4

以太网段路由可以携带本端网关的ESI值、源地址和RD值,用来实现连接到相同VM的网关设备之间互相自动发现。以太网段路由主要用于DF(Designated Forwarder)选举。
在这里插入图片描述

在这里插入图片描述

Type5

该类型路由的IP Prefix Length和IP Prefix字段既可以携带主机IP地址,也可以携带网段地址:
当携带主机IP地址时,该类型路由在VXLAN控制平面中的作用与IRB类型路由是一样的,主要用于分布式网关场景中的主机IP路由通告。
当携带网段地址时,通过传递该类型路由,可以实现VXLAN网络中的主机访问外部网络。

interface-less 模型,GW IP = 0,保留三层VNI信息,下一跳路由器MAC是BGP扩展属性的一部分。
在这里插入图片描述

在这里插入图片描述

### 解决 DeepSeek 在 ChatBox 中无法识别图片的问题 DeepSeek 是一种强大的语言模型,但在集成到像 ChatBox 这样的应用时可能会遇到一些特定的功能挑战,比如图片识别功能的缺失。为了使 DeepSeek 能够处理并理解图像数据,在 ChatBox 应用中可以采取以下几种方法来实现这一目标。 #### 方法一:引入外部视觉 API 服务 由于 DeepSeek 主要专注于文本处理能力,对于图像的理解支持可能有限。因此可以通过调用第三方提供的计算机视觉 API 来增强其对图片内容的认知。这些API通常具备丰富的预训练模型库,能够快速准确地解析上传至聊天界面中的各类图象文件[^1]。 例如,可选用 Google Cloud Vision 或者 Microsoft Azure Cognitive Services 的 Computer Vision 组件作为辅助工具。开发者只需按照官方文档说明完成相应 SDK 安装配置工作之后,便可以在接收到用户发送过来的照片时自动触发分析请求,并将返回的结果转换成自然语言描述反馈给前端显示区域供双方交流讨论使用[^2]。 ```python from google.cloud import vision_v1p3beta1 as vision def detect_image_labels(image_path): client = vision.ImageAnnotatorClient() with open(image_path, 'rb') as image_file: content = image_file.read() image = vision.types.Image(content=content) response = client.label_detection(image=image) labels = response.label_annotations result = [] for label in labels: result.append(label.description) return ', '.join(result) ``` #### 方法二:扩展 DeepSeek 功能集 如果希望更深入地定制化开发,则考虑基于现有框架进一步优化改进,使其原生支持多媒体输入形式。这涉及到研究如何让神经网络架构适应多模态学习环境下的参数调整策略以及特征提取机制等方面的知识点。 具体来说就是通过迁移学习的方式加载已有的卷积神经网络(CNN),如 ResNet、VGG 等预先训练好的权重矩阵;再利用 Fine-tuning 技术针对实际应用场景微调最后一层全连接层直至达到满意的性能指标为止。最后把经过改造后的版本部署上线替换掉原来的单纯依赖于文字交互逻辑的服务端程序实例即可满足需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值