2024年数维杯国际赛D题论文全网首发+代码保姆级讲解

无附录 58页 2万字  11页纯图 无文字

图片

图片

城市韧性与可持续发展能力评估

摘要

中国人口老龄化趋势加剧,2022年首次出现了人口负增长,这表明未来中国将长期面临人口减少的趋势。这一趋势必然会对许多城市,特别是二线和三线城市的高质量与可持续发展产生深远影响。同时,全球极端气候事件的频繁发生和当前经济下行压力将对城市发展的韧性提出前所未有的挑战。

针对问题1,首先最重要的是对数据进行正确的缺失值处理,并采用四种模型(线性回归、决策树、随机森林和梯度提升)进行模型预测,然后训练模型并选取效果最好的模型作为最终模型进行区域房价预测,最后可视化并计算住房总量的估算。

针对问题2,我们需要对城市1(长春)和城市2(呼和浩特)的十五个不同部门的服务水平进行定量分析,提取两城市的共性和独特性,并分析它们各自的优缺点。可以看出这是一个统计分析的问题,采用数量统计分析与图像可视化来进行比较。

针对问题3,,目标是评估两座城市在极端天气和突发事件方面的韧性,以及其可持续发展的能力。根据提供的十五个文件(服务指标),我们可以初步

一、符号说明

为了方便我们模型的建立与求解过程 ,我们这里对使用到的关键符号进行以下说明

图片

一、问题求解与分析

4.1 问题1求解与分析

4.1.1 问题1分析

针对问题1,首先最重要的是对数据进行正确的缺失值处理,并采用四种模型(线性回归、决策树、随机森林和梯度提升)进行模型预测,然后训练模型并选取效果最好的模型作为最终模型进行区域房价预测,最后可视化并计算住房总量的估算。

4.1.2 问题1建模与求解

问题1的目标是对城市1和城市2的未来房价进行具体预测,并对现有住房总量进行具体估计。为了实现这一目标,我们采用了多种机器学习回归模型来进行房价预测。具体的步骤包括数据预处理、特征选择、模型构建与训练、模型预测、结果评价和分析。

1、数据预处理

(1)缺失值处理

从Appendix 1与Appendix 2给出的某日城市1和城市2在58同城上出售房产的基本信息可以看到有很多N/A值,缺失值可视化的特征变量情况如图1和图2所示。其中,图1的柱形图是城市1变量缺失情况统计,图2的饼图是城市2变量缺失情况统计。假如将城市1的Appendix 1里面的空值全部进行删除的操作,那么原有的4600多条数据就会缩减成900多条,这种缺失值的处理方式是不太合理的。因此本文采用缺失值替换与填补的操作进行处理。

对于数值型变量,采用随机森林来进行预测填补,对于数值型变量,使用众数列进行填补。

图片

Community Number

0

Price (USD)

0

Total number of households

0

Greening rate

0

Floor area ratio

0

Building type

0

parking space

0

Property management fee (/m²/month USD)

0

above-ground parking fee (/month USD)

0

underground parking fee (/month USD)

0

property type

0

citycode

0

adcode

0

lon

0

lat

0

X

0

Y

0

可以看到,缺失值已被全部处理。

(2)数据编码与标准化

Label Encoding:对于类别型变量(例如Building type),使用LabelEncoder将其转换为数值。

Min-Max标准化:对特征和目标变量进行标准化,将所有数值缩放到 [0, 1] 的区间。这样可以使得模型在训练时更加稳定,避免特征取值差异过大对结果的影响。

1、模型结果

(1)城市1

各模型预测的房价数值:

表3 模型Linear Regression结果

Citycode

Adcode

Predicted Average Price (USD)

0

431

220104

6764.782218

1

431

220173

7825.148383

2

431

220103

7395.310954

3

431

220106

6301.285135

4

431

220183

5778.481958

5

431

220105

7177.316057

6

431

220171

7700.144560

7

431

220172

9983.853414

8

431

220113

6273.302201

9

431

220174

6645.492549

10

431

220102

7949.806720

11

431

220122

6249.736509

12

431

220112

6984.504301

13

431

220182

5993.360766

表4 模型Decision Tree结果

Citycode

Adcode

Predicted Average Price (USD)

14

431

220104

8980.339255

15

431

220173

8566.413527

16

431

220103

6248.714788

17

431

220106

6948.823878

18

431

220183

3696.665550

19

431

220105

7226.104817

图片

问题2求解与分析

4.2.1 问题2分析

根据问题2的描述,我们需要对城市1(长春)和城市2(呼和浩特)的十五个不同部门的服务水平进行定量分析,提取两城市的共性和独特性,并分析它们各自的优缺点。可以看出这是一个统计分析的问题,采用数量统计分析与图像可视化来进行比较。

4.2.2 问题2分析与求解

1、数据预处理与整合

(1)加载数据:读取所有十五个服务数据表,包括住宿服务、商业住宅、医疗与健康、公共设施等。

(2)清洗数据:检查并处理缺失值、重复值等异常数据,统一数据格式和单位。

15个服务水平表11所示。

表11 服务水平

Accommodation service data

住宿服务数据

Business-residential data

商住数据

Car data

汽车数据

Finance and insurance data

金融保险数据

Food and beverage service data

餐饮服务数据

Geographical name and address information data

地理名称及地址信息数据

Government and social organizations data

政府及社会组织数据

Interior amenities data

室内设施数据

Lifestyle service data

生活服务数据

Medical and health data

医疗健康数据

Motorbike data

摩托车数据

Public facilities data

公共设施数据

Retail service data

零售服务数据

Science, education, and culture data

科教文化数据

Transportation facilities data

交通设施数据

2、指标量化与标准化

(1)定义关键指标:针对每个服务类别,定义量化服务水平的关键指标。住宿服务:酒店和旅馆的数量、高级酒店的比例等。商业住宅:居民区数量、商业区面积等。医疗与健康:医院和诊所的数量、每千人拥有的医生数等。公共设施:公园、图书馆、社区中心数量等。

(2)标准化:将每个服务指标标准化(例如通过 Z-score 或 Min-Max 标准化),确保不同服务指标在同一尺度上进行比较。

3、定量分析法

(1)区域平均值计算:计算每个城市各服务类别在不同区域的平均水平,用于代表该城市在该服务类别中的服务水平。

(2)可视化比较:使用图像展示两城市在各服务类别上的服务水平,以直观显示它们的强项和弱项。

4、共性与独特性分析

找出两城市在各服务类别中的相似之处,例如若两城市的基本公共服务(如医疗、教育)都有一定覆盖率,则可以归纳为共性。将每个服务类别的差异系数绘制成柱状图或条形图,直观展示两城市在各服务类别中的差异程度。

5、优缺点分析

根据得到的比例结果进行定量分析,针对不同服务水平来分析城市1与城市2的优势与劣势。

4.2.3 问题2结果分析

1、住宿服务数据

针对两个城市的住宿服务数据,首先将其进行可视化操作观察不同类型住宿设施的数量分布情况。图5和图7是城市1的22种住宿设施,图6和图8是城市2的19种住宿服务数据统计。由于种类比较多,难以量化,因此采用将小类细分成大类的形式对数据重新进行统计并进行量化分析,来观察城市1和城市2的住宿服务水平。

2023五一数学建模b保姆思路代码:快递需求分析问。 首先,我们可以采用Python编程语言来解决这个问。我们需要使用一些常用的据分析库,例如Numpy和Pandas。 代码实现思路如下: 1. 首先,我们需要导入所需的库: import numpy as np import pandas as pd 2. 接下来,读取据集并进行预处理: data = pd.read_csv('data.csv') # 读取据集 data['日期'] = pd.to_datetime(data['日期']) # 将日期转换为标准格式 3. 对快递需求进行分析: 3.1 计算每日总需求量: data['总需求量'] = data['订单量'].groupby([data['日期']]).transform('sum') 3.2 计算每月平均需求量: data['月平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.month]).transform('mean') 3.3 计算每周平均需求量: data['周平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.week]).transform('mean') 4. 进行需求分析: 4.1 计算每个月的需求波动情况: data['需求波动'] = data['总需求量'] - data['月平均需求量'] 4.2 计算每个周的需求波动情况: data['周需求波动'] = data['总需求量'] - data['周平均需求量'] 5. 可以根据需求波动情况,进行快递员人的调整以满足不同时间段的需求波动情况。 以上就是解决2023五一数学建模b保姆思路代码的大致思路。当然,具体的代码实现还需要根据目要求和据集进行进一步的调整和优化。同时,在实际问中,我们还可以利用据可视化工具如Matplotlib将分析结果以图表的方式展示出来,更直观地展示快递需求的变化趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值