第一版本 无附录 43页 23072字 7*5*3*3=315种方案选择
问题一 六种基础模型+一种集成模型
问题二 五种模型对比
问题三 三种模型
问题四 单模型三情况对比
中国宠物食品行业的发展趋势与汇率情景分析:基于多模型的量化预测与决策分析
摘要
近年来,中国宠物食品行业迅速增长,但面临复杂的国际形势和多变的市场环境,因此科学地分析和预测该行业的发展趋势至关重要。本研究通过构建多个机器学习与统计回归模型,量化分析中国宠物食品行业的关键驱动因素,预测未来宠物食品总产值和出口值。
在数据处理部分,收集了2019年至2023年中国宠物食品行业的相关数据,包括宠物数量、市场规模、人口增长率、人均GDP、汇率等多项指标。为确保数据的可比性与模型的有效性,进行了数据标准化、特征选择及特征工程,构建了完整的分析数据集。
对于问题一,首先分析了哪些因素对中国宠物食品总产值产生显著影响。通过使用相关性分析与线性回归模型,发现宠物数量、市场规模和全球市场规模与宠物食品总产值的相关性最高,相关系数分别为0.945、0.xxx和0.9xx。同时,美元兑人民币汇率(USD/CNY)与宠物食品总产值之间也存在0.xxx的正相关性,这表明汇率波动对宠物食品总产值具有一定的影响。
在问题二中,研究了影响中国宠物食品出口值的关键因素,并采用支持向量回归(SVR)模型进行建模。通过多因素的特征选择,构建了与出口相关的特征集(食品出口百分比、人口增长率、美元汇率、美国对中国的宠物食品进口量),利用SVR模型对未来进行预测,结果显示,2027年中国宠物食品出口值在基本情景下预计达到xxx.xx亿美元。
问题三是对未来中国宠物数量的预测分析。由于宠物数量的变化具有一定的非线性特征,采用了多种模型,包括线性回归、多项式回归和指数回归,并使用组合模型加权优化预测结果。最终预测显示,到2027年,中国宠物数量将达到xxx.xx百万,结合多模型组合预测的结果,均方误差(MSE)相比单一模型降低了xxx%。
针对问题四,分析了汇率变化对宠物食品出口的影响,进行了不同汇率情景下的预测。情景一为基础汇率增长2%,情景二为汇率大幅增加10%,情景三为汇率减少5%。结果表明,在汇率大幅增加的情景下,到2027年宠物食品出口可能下降至28.9亿美元,而在汇率减少的情景下,出口则有望增加到62.3亿美元。这一结果表明汇率波动对出口具有较大的影响,是中国宠物食品行业需考虑的重要风险因素。
在问题五中,进行了中国宠物食品总产值和出口值的综合预测,并采用了包括支持向量回归(SVR)、随机森林、线性回归和多项式回归等多种模型进行比较和加权组合。结果显xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
关键词:宠物食品行业,回归分析,支持向量回归,情景分析,汇率波动,行业预测
一、模型的建立与求解
5.1 数据收集与处理
5.1.1 数据收集
为了对全球及中国宠物行业的发展情况进行深入分析,进行了广泛的数据收集工作。本研究的数据来源涵盖了宠物食品市场规模、兽医服务开支、宠物食品开支、美国宠物家庭渗透率、关税政策以及宠物医疗市场规模等多个维度。本研究还收集了多项经济和行业指标数据,具体如下:
分类 | 指标名称 |
市场规模与经济数据 | 猫的全球市场规模(亿美元),狗的全球市场规模(亿美元),宠物市场规模(百万和亿美元),宠物食品开支(亿美元),兽医服务开支(亿美元),宠物医疗市场规模(亿元人民币),中国宠物食品出口总值(美元),中国宠物食品总产值(人民币),欧盟宠物食品进口总额(亿欧元),美国宠物食品进口总额(亿美元)。 |
贸易与关税政策数据 | 报告经济体的商品出口,向拉丁美洲和加勒比地区的发展中经济体的商品出口(占商品出口总额的百分比),向高收入经济体的商品出口,制造业出口,食品出口(占商品出口的百分比),美国最惠国税率(MFN),美国对中国加征关税,欧盟最惠国税率(MFN),欧盟对中国加征关税,进口数量限制,自由贸易协定(FTA)。 |
宏观经济与人口数据 | 出生人口性别比(每1000名男性的女性),总生育率(女性人均生育数),年轻群体总失业人数(占15-24岁所有劳动力数量的比例),人口总数(女性),人口增长(年度百分比),总税率(占商业利润的百分比),税收(占国民生产总值(GDP)比例),城镇人口,农村人口,汇率(USD/CNY,EUR/CNY),人均 GDP(现价美元),按购买力平价 (PPP) 衡量的居民最终消费支出(现价国际元),商业服务进口额(现价美元),食品生产指数(2014-2016 = 100),基尼 (GINI) 系数。 |
宠物行业普及率与渗透率 | 中国宠物家庭渗透率,美国宠物家庭渗透率,全球宠物狗数量(亿只),全球宠物猫数量(亿只),全球人均宠物食品消费(美元)。 |
通过多来源、多维度的数据收集,确保了数据的全面性和可靠性,部分来源网站如下所示
表1:来源网站
宠物食品市场规模(亿美元) | 兽医服务开支 (亿美元)+宠物食品开支 (亿美元) | 美国宠物家庭渗透率 |
https://www.jiemian.com/article/11967023.html | https://www.euromonitor.com/ | https://www.sohu.com/a/700105587_121746450 |
https://www.thepaper.cn/newsDetail_forward_29179742 | https://www.marketresearch.com | https://www.21jingji.com/article/20240117/herald/100e75780066b931e56c2d585b19b3a5.html |
https://www.hangyan.co/charts/3488743342085244004 | https://www.hangyan.co/charts/3392831999713477730 |
5.1.2 数据清洗
首先,需要对数据进行必要的处理工作对于初步收集的数据存在大量的缺失值,需要补充。由于部分指标仅只能在网站收集,网站给出数据并非逐年的。为了方便后续计算,需要对缺失值数据利用插值方式进行补充。
表1:缺失值数据
法国相关数据 | ||||
年份 | 兽医服务开支(亿美元) | 宠物医疗市场规模(亿欧元) | 报告经济体的商品出口,剩余(占商品出口总额的百分比) | 总生育率(女性人均生育数) |
2019 | 1.2 | 0.787204677 | 1.86 | |
2020 | 1.9 | 1.3 | 0.455771952 | 1.83 |
2021 | 2 | 1.4 | 0.466127228 | 1.84 |
2022 | 1.794 | |||
2023 | 2.4 | 1.6 | 0.296505815 | 1.844526316 |
5.2 问题一模型的建立与求解
5.2.1 分析发展情况
为了更好地理解数据的变化趋势,利用matlab通过六个子图对宠物行业中的关键变量进行了可视化展示。图形展示的意图如下
图 1. 宠物数量变化展示了 猫数量、狗数量 和 总宠物数量 在 2019-2023 年间的变化趋势。结果显示:猫的数量呈逐年上升的趋势,尤其在2020年之后增长较快;而狗的数量则存在一定的波动,尤其在2020年到2022年间有所下降,可能与疫情期间人们对养狗的需求和条件变化有关,总宠物数量总体呈现稳定增长。
5.2.3 预测未来发展
使用了历史数据和多种回归方法对中国猫的数量在未来三年内的增长情况进行了预测。具体来说,结合了 线性回归、多项式回归、非线性回归 和 加权预测模型 来提高预测的准确性,并对各模型的预测误差进行了对比分析。下面将详细描述模型的构建、预测过程
数据定义
·历史年份 (years) : 从2019年到2023年。
·人口增长率 (pop_growth_rate): 毎年的年度人口增长率 (%)。
·人均GDP (gdp_per_capita): 以现价美元计算的人均GDP。
·猫数量 (cat_count)、狗数量 (dog_count) 和 总宠物数量 (total_pet_count):表示宠物的数量(以万为单位)。
·宠物市场规模 (market_size) 和 宠物医疗市场规模 (pet_medical_market_size) : 分别以亿美元和亿元人民币表示。
未来数据的预测:
·未来三年 (years_future): 2025年到2027年。
·未来三年人口增长率 (pop_growth_rate_future): 假定的负增长率。
·未来三年人均GDP (gdp_per_capita_future):按照每年5%的增长率预测。
为了预测未来的猫数量,使用了三种不同的回归模型:
线性回归预测
MAPE 和 RMSE 的柱状图 用于比较不同模型的误差,可以直观看出 加权预测模型 在两项指标上都表现最好,说明通过结合不同模型的优势可以得到更准确的预测。通过对猫数量的预测,构建了 线性、多项式、非线性 等多种回归模型,最终使用 加权平均 的方式将各模型的预测进行优化组合。加权预测模型在误差评估上表现最佳,这说明通过结合多种模型的优势,可以显著提高预测精度。
未来的猫数量预测(2025-2027年)基于多种经济指标(如人口增长率和人均GDP),通过这种多模型结合的方法,能够更好地应对复杂的非线性增长特性,为中国宠物行业的发展提供更为可靠的趋势预测。
% 1. 数据定义
years = [2019, 2020, 2021, 2022, 2023]; % 年份
cat_count = [4412, 4862, 5806, 6536, 6980]; % 猫数量(万)
dog_count = [5503, 5222, 5429, 5119, 5175]; % 狗数量(万)
total_pet_count = [9980, 10850, 11540, 12260, 13020]; % 总宠物数量(万)
market_size = [33.2, 35.6, 38.9, 42.1, 45.5]; % 宠物市场规模(亿美元)
pet_food_expenditure = [15.1, 16.2, 17.5, 18.9, 20.3]; % 宠物食品开支(亿美元)
vet_service_expenditure = [3.4, 3.8, 4.1, 4.5, 4.9]; % 兽医服务开支(亿美元)
pet_family_penetration = [0.18, 0.20, 0.20, 0.20, 0.22]; % 家庭宠物家庭渗透率
pet_medical_market_size = [400, 500, 600, 640, 700]; % 宠物医疗市场规模(亿元人民币)
total_population = [1407745000, 1411100000, 1412360000, 1412175000, 1410710000]; % 人口总数
population_growth_rate = [0.35474089, 0.23804087, 0.0892522, -0.013099501, -0.103794532]; % 人口增长(年度百分比)
gini_index = [38.2, 37.1, 35.7, 35.54242424, 34.947669]; % 基尼系数
urban_population = [848982855, 866810508, 882894483, 897578430, 910895447]; % 城镇人口
rural_population = [558762145, 544289492, 529465517, 514596570, 499814553]; % 农村人口
gdp_per_capita = [10143.86022, 10408.71955, 12617.5051, 12662.58317, 12614.06099]; % 人均GDP(现价美元)
% 2. 创建图形(中文版本)
figure;
% 绘制宠物数量变化(猫、狗、总宠物数量)
subplot(3, 2, 1); % 3行2列子图的第一个位置
hold on;
plot(years, cat_count, 'o-', 'DisplayName', '猫数量', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'b');
plot(years, dog_count, 's-', 'DisplayName', '狗数量', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'r');
plot(years, total_pet_count, '^-', 'DisplayName', '总宠物数量', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'g');
hold off;
xlabel('年份');
ylabel('数量(万)');
title('宠物数量变化(猫、狗、总宠物)');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制宠物市场规模、宠物食品开支与兽医服务开支
subplot(3, 2, 2); % 3行2列子图的第二个位置
hold on;
plot(years, market_size, 'o-', 'DisplayName', '宠物市场规模', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'c');
plot(years, pet_food_expenditure, 's-', 'DisplayName', '宠物食品开支', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'm');
plot(years, vet_service_expenditure, '^-', 'DisplayName', '兽医服务开支', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'k');
hold off;
xlabel('年份');
ylabel('金额(亿美元)');
title('宠物市场规模与相关支出');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制宠物医疗市场规模与家庭宠物家庭渗透率
subplot(3, 2, 3); % 3行2列子图的第三个位置
yyaxis left;
plot(years, pet_medical_market_size, 'o-', 'DisplayName', '宠物医疗市场规模', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'g');
ylabel('宠物医疗市场规模(亿元人民币)');
yyaxis right;
plot(years, pet_family_penetration, 's-', 'DisplayName', '家庭宠物渗透率', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'b');
ylabel('家庭宠物渗透率');
xlabel('年份');
title('宠物医疗市场规模与家庭宠物渗透率');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制人均GDP趋势
subplot(3, 2, 4); % 3行2列子图的第四个位置
plot(years, gdp_per_capita, 'o-', 'DisplayName', '人均GDP', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'r');
xlabel('年份');
ylabel('人均GDP(现价美元)');
title('人均GDP变化趋势');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制人口增长率与基尼系数
subplot(3, 2, 5); % 3行2列子图的第五个位置
yyaxis left;
plot(years, population_growth_rate, 'o-', 'DisplayName', '人口增长率', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'b');
ylabel('人口增长率(年度百分比)');
yyaxis right;
plot(years, gini_index, 's-', 'DisplayName', '基尼系数', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'm');
ylabel('基尼系数');
xlabel('年份');
title('人口增长率与基尼系数');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制城镇人口与农村人口
subplot(3, 2, 6); % 3行2列子图的第六个位置
hold on;
plot(years, urban_population, 'o-', 'DisplayName', '城镇人口', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'g');
plot(years, rural_population, 's-', 'DisplayName', '农村人口', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'r');
hold off;
xlabel('年份');
ylabel('人口数量');
title('城镇人口与农村人口变化');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 设置整体标题
sgtitle('中国宠物行业发展情况(2019-2023)', 'FontSize', 16);
% 2. 创建英文版本图形
figure;
% 绘制宠物数量变化(猫、狗、总宠物数量)
subplot(3, 2, 1); % 3行2列子图的第一个位置
hold on;
plot(years, cat_count, 'o-', 'DisplayName', 'Cat Number', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'b');
plot(years, dog_count, 's-', 'DisplayName', 'Dog Number', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'r');
plot(years, total_pet_count, '^-', 'DisplayName', 'Total Pet Number', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'g');
hold off;
xlabel('Year');
ylabel('Number (10,000)');
title('Pet Number Change (Cat, Dog, Total Pet)');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制宠物市场规模、宠物食品开支与兽医服务开支
subplot(3, 2, 2); % 3行2列子图的第二个位置
hold on;
plot(years, market_size, 'o-', 'DisplayName', 'Pet Market Size', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'c');
plot(years, pet_food_expenditure, 's-', 'DisplayName', 'Pet Food Expenditure', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'm');
plot(years, vet_service_expenditure, '^-', 'DisplayName', 'Vet Service Expenditure', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'k');
hold off;
xlabel('Year');
ylabel('Expenditure (Billion USD)');
title('Pet Market Size and Related Expenditures');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制宠物医疗市场规模与家庭宠物家庭渗透率
subplot(3, 2, 3); % 3行2列子图的第三个位置
yyaxis left;
plot(years, pet_medical_market_size, 'o-', 'DisplayName', 'Pet Medical Market Size', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'g');
ylabel('Pet Medical Market Size (Billion CNY)');
yyaxis right;
plot(years, pet_family_penetration, 's-', 'DisplayName', 'Pet Penetration Rate', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'b');
ylabel('Pet Penetration Rate');
xlabel('Year');
title('Pet Medical Market Size and Penetration Rate');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制人均GDP趋势
subplot(3, 2, 4); % 3行2列子图的第四个位置
plot(years, gdp_per_capita, 'o-', 'DisplayName', 'GDP per Capita', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'r');
xlabel('Year');
ylabel('GDP per Capita (USD)');
title('GDP per Capita Trend');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制人口增长率与基尼系数
subplot(3, 2, 5); % 3行2列子图的第五个位置
yyaxis left;
plot(years, population_growth_rate, 'o-', 'DisplayName', 'Population Growth Rate', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'b');
ylabel('Population Growth Rate (%)');
yyaxis right;
plot(years, gini_index, 's-', 'DisplayName', 'Gini Index', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'm');
ylabel('Gini Index');
xlabel('Year');
title('Population Growth Rate and Gini Index');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 绘制城镇人口与农村人口
subplot(3, 2, 6); % 3行2列子图的第六个位置
hold on;
plot(years, urban_population, 'o-', 'DisplayName', 'Urban Population', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'g');
plot(years, rural_population, 's-', 'DisplayName', 'Rural Population', 'LineWidth', 2, 'MarkerSize', 6, 'Color', 'r');
hold off;
xlabel('Year');
ylabel('Population');
title('Urban vs Rural Population Change');
legend('show');
grid on;
set(gca, 'FontSize', 12);
% 设置整体标题
sgtitle('Development of the Pet Industry in China (2019-2023)', 'FontSize', 16);