时间序列(Time-Series)Embed.py代码解析

11 篇文章 1 订阅
9 篇文章 1 订阅

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm
import math

#定义了一个位置嵌入类,它能提供序列中每个元素的位置信息。
class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):

        # super(PositionalEmbedding, self).__init__() 在子类中调用父类的初始化方法。
        # pe = torch.zeros(max_len, d_model).float() 创建一个max_len行d_model列的浮点数零张量,用于存储位置嵌入。
        # pe.require_grad = False 设置这个张量不需要计算梯度,因为位置嵌入是固定的。
        # position = torch.arange(0, max_len).float().unsqueeze(1) 创建一个0到max_len的连续值,并增加一个维度。
        # div_term = ... 计算位置编码的分频项。
        # pe[:, 0::2] = torch.sin(position * div_term) 使用正弦函数给偶数位置编码。
        # pe[:, 1::2] = torch.cos(position * div_term) 使用余弦函数给奇数位置编码。
        # pe = pe.unsqueeze(0) 增加一维,为批量维度做准备。
        # self.register_buffer('pe', pe) 将位置嵌入张量注册为模型的一个缓冲区,它不会被认为是一个模型参数。
               
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float()
                    * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)


    def forward(self, x):
        # return self.pe[:, :x.size(1)] 在前向传播时返回位置嵌入的一个子集,其长度与输入x的长度一致。
        return self.pe[:, :x.size(1)]


class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        # super(TokenEmbedding, self).__init__() 调用父类的初始化方法。
        # padding = ... 根据PyTorch版本来决定卷积的填充值。
        # self.tokenConv = nn.Conv1d(...) 定义一个一维卷积层,用于从输入序列中学习表示。         
        super(TokenEmbedding, self).__init__()
        padding = 1 if torch.__version__ >= '1.5.0' else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
                                   kernel_size=3, padding=padding, padding_mode='circular', bias=False)
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                # nn.init.kaiming_normal_(...) 使用Kaiming初始化方法初始化卷积层的权重。
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_in', nonlinearity='leaky_relu')
       


    def forward(self, x):
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) #在前向传播中,对输入x进行维度交换,应用卷积,然后再次交换维度,使其回到原始的形状。
        return x


class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):

        # super(FixedEmbedding, self).__init__() 调用父类的初始化方法。
        # w = torch.zeros(c_in, d_model).float() 创建一个用于存储嵌入的零张量。
        # w.require_grad = False 设置不需要计算梯度。
        # self.emb = nn.Embedding(c_in, d_model) 创建一个嵌入层。
        # self.emb.weight = nn.Parameter(w, requires_grad=False) 将预计算好的权重作为嵌入层的权重。
        
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float()
                    * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        # return self.emb(x).detach() 返回嵌入的结果,并确保不会计算梯度。
        return self.emb(x).detach()

#定义了一个时间嵌入类,用于处理与时间相关的输入特征
class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='fixed', freq='h'):

        #super(TemporalEmbedding, self).__init__() 调用父类的初始化方法。
        #minute_size、hour_size 等定义了时间相关特征的可能值的大小。
        #Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding 根据嵌入类型选择使用固定嵌入还是可学习的嵌入。
        #self.minute_embed 等创建不同时间维度的嵌入层。
     
        super(TemporalEmbedding, self).__init__()

        minute_size = 4
        hour_size = 24
        weekday_size = 7
        day_size = 32
        month_size = 13

        Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
        if freq == 't':
            self.minute_embed = Embed(minute_size, d_model)
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        self.day_embed = Embed(day_size, d_model)
        self.month_embed = Embed(month_size, d_model)

    def forward(self, x):
        x = x.long()
        minute_x = self.minute_embed(x[:, :, 4]) if hasattr(
            self, 'minute_embed') else 0.
        hour_x = self.hour_embed(x[:, :, 3])
        weekday_x = self.weekday_embed(x[:, :, 2])
        day_x = self.day_embed(x[:, :, 1])
        month_x = self.month_embed(x[:, :, 0])

        #return hour_x + weekday_x + day_x + month_x + minute_x 在前向传播时返回所有时间嵌入的总和。   
        return hour_x + weekday_x + day_x + month_x + minute_x

#定义了一个时间特征嵌入类,仅使用一个线性层来嵌入时间特征。
class TimeFeatureEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='timeF', freq='h'):
        # super(TimeFeatureEmbedding, self).__init__() 调用父类的初始化方法。
        # freq_map = ... 定义了不同频率对应的输入维度。
        # self.embed = nn.Linear(d_inp, d_model, bias=False) 创建一个线性层,用于将时间特征投影到一个d_model维的空间。

        super(TimeFeatureEmbedding, self).__init__()

        freq_map = {'h': 4, 't': 5, 's': 6,
                    'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3}
        d_inp = freq_map[freq]
        self.embed = nn.Linear(d_inp, d_model, bias=False)

    def forward(self, x):
        # return self.embed(x) 返回线性层的输出。
        return self.embed(x)


class DataEmbedding(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):

        # super(DataEmbedding, self).__init__() 调用父类的初始化方法。
        # self.value_embedding = ... 创建一个用于值的嵌入层。
        # self.position_embedding = ... 创建一个位置嵌入实例。
        # self.temporal_embedding = ... 创建一个时间嵌入实例。
        # self.dropout = nn.Dropout(p=dropout) 定义一个dropout层,用于防止过拟合。
        
        super(DataEmbedding, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
            d_model=d_model, embed_type=embed_type, freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        # if x_mark is None: ... 根据是否有时间标记来决定如何计算嵌入。
        if x_mark is None:
            x = self.value_embedding(x) + self.position_embedding(x)
        else:
            x = self.value_embedding(
                x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
        return self.dropout(x)


class DataEmbedding_inverted(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding_inverted, self).__init__()
        self.value_embedding = nn.Linear(c_in, d_model)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        x = x.permute(0, 2, 1)
        # x: [Batch Variate Time]
        if x_mark is None:
            x = self.value_embedding(x)
        else:
            x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1))
        # x: [Batch Variate d_model]
        return self.dropout(x)

#定义了一个数据嵌入类,它使用线性层而不是卷积层来嵌入输入数据。
class DataEmbedding_wo_pos(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):

        # super(DataEmbedding_inverted, self).__init__() 调用父类的初始化方法。
        # self.value_embedding = nn.Linear(c_in, d_model) 创建一个线性层用于值嵌入。
        # x = x.permute(0, 2, 1) 在前向传播中,交换维度以适应线性层的输入格式。


        super(DataEmbedding_wo_pos, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
            d_model=d_model, embed_type=embed_type, freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        # if x_mark is None: ... 根据是否有时间标记来决定如何组合嵌入。
        if x_mark is None:
            x = self.value_embedding(x)
        else:
            x = self.value_embedding(x) + self.temporal_embedding(x_mark)
        return self.dropout(x)

#定义了一个补丁嵌入类,用于处理将数据切分成补丁并嵌入。
class PatchEmbedding(nn.Module):
    def __init__(self, d_model, patch_len, stride, padding, dropout):
        # super(PatchEmbedding, self).__init__() 调用父类的初始化方法。
        # self.patch_len、self.stride、self.padding_patch_layer 定义了补丁的长度、步长和填充层。
        # self.value_embedding = ... 创建一个线性层用于补丁的嵌入。
        # self.position_embedding = ... 创建一个位置嵌入实例。

        super(PatchEmbedding, self).__init__()
        # Patching
        self.patch_len = patch_len
        self.stride = stride
        self.padding_patch_layer = nn.ReplicationPad1d((0, padding))

        # Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
        self.value_embedding = nn.Linear(patch_len, d_model, bias=False)

        # Positional embedding
        self.position_embedding = PositionalEmbedding(d_model)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # n_vars = x.shape[1] 获取变量数量。
        # x = self.padding_patch_layer(x) 应用填充。
        # x = x.unfold(dimension=-1, ...) 将数据展开成补丁。
        # x = torch.reshape(x, ...) 重塑张量以适应线性层。
        # x = self.value_embedding(x) + self.position_embedding(x) 应用值嵌入和位置嵌入。
        # return self.dropout(x), n_vars 返回dropout后的嵌入结果和变量数量。

        # do patching
        n_vars = x.shape[1]
        x = self.padding_patch_layer(x)
        x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
        x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
        # Input encoding
        x = self.value_embedding(x) + self.position_embedding(x)
        return self.dropout(x), n_vars
 

  • 14
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值