简单题意
有一套颜料从3到12色不等,每一套颜料各种颜色各为50毫升,其中灰色这种颜色需要用其他任意三种颜色调和,给出需要的颜色的数量求出需要最少几套颜料
解题思路形成过程
首先按照基本要用的颜色(不可调和),求出至少需要多少套,首先按照数量降序排序,把最大的数整除50,如果取余50不等于0则需要加一套颜料(一开始没想到这一点),之后计算出剩余的颜料,用来调配灰色,每次把剩余颜料数量降序排序按照第三多的颜料调配,然后每次减掉前面三个颜料的数量,如果第三多的颜料数量为0,则再加一套颜料。一切都很正常,直到遇见了最后一组数据,我求出来是5但答案就是4,想了好久才发现,原来不一定很极端把第三大多的颜料每次都用光,可以可以和多种其他颜料调配灰色,为了更细致化模拟调配过程,我就每次1ml的调,怕会不会超时,不过还是过了。
感想
不容易呀,到处都是陷阱
AC代码
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
using namespace std;
bool cmp(int a,int b){
return a>b;
}
int main()
{
ifstream cin("in.txt");
int n;
int gray;
vector<int>c,left;
while(cin>>n&&n){
c.clear();
left.clear();
int cnt=0;
for(int i=0;i<n;i++){
cin>>gray;
c.push_back(gray);
}
cin>>gray;
sort(c.begin(),c.end(),cmp);
cnt=c[0]/50;
if(c[0]%50!=0){
cnt++;
}//ÏÈËã³ö»ù´¡ÑÕÉ«ÐèÒª¶àÉÙ
for(int i=0;i<n;i++){
left.push_back((cnt*50)-c[i]);
}//¼ÆËãÊ£ÓàÑÕÉ«ÓÃÀ´µ÷Åä»ÒÉ«
while(gray>0){
sort(left.begin(),left.end(),cmp);
if(left[2]==0){
cnt++;
for(int i=0;i<n;i++)left[i]+=50;
}
gray--;left[0]--;left[1]--;left[2]--;
}
cout<<cnt<<endl;
}
return 0;
}