problem k: 查找某一个数_查找算法之 斐波那契查找算法

简述

晚些补充

代码实现

package com.yuan.common.search;

import java.util.Arrays;

/**
 * 斐波那契查找
 *
 * @author Yuan-9826
 */
public class FibonacciSearch {

    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = {1, 8, 10, 89, 1000, 1234};

        System.out.println("index=" + fibSearch(arr, 89));

    }

    /**
     * 因为后面我们mid=left+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
     */
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    /**
     * @param arr 目标数组
     * @param key 目标数组中要查询的值
     * @return 目标数组中要查询的值对应的下标,如果没有-1
     */
    private static int fibSearch(int[] arr, int key) {
        int left = 0;
        /**
         * 返回的目标下标
         */
        int right = arr.length - 1;
        /**
         * 表示斐波那契分割数值的下标
         */
        int k = 0;
        /**
         * 存放mid值
         */
        int mid = 0;
        /**
         * 获取到斐波那契数列
         */
        int f[] = fib();

        //就是找到这样一个k:第k个斐波那契数的值 ≥ 要查找数组的长度
        while (right > f[k] - 1) {
            k++;
        }

        //因为 k 值 可能大于 arr 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
        //不足的部分会使用0填充
        int[] temp = Arrays.copyOf(arr, f[k]);
        //实际上需求使用arr数组最后的数填充 temp
        //举例:
        //temp = {1,8, 10, 89, 1000, 1234, 0, 0}  => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
        for (int i = right + 1; i < temp.length; i++) {
            temp[i] = arr[right];
        }


/**
 * 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。
 * 该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段。
 * 从而中间位置为mid=low+F(k-1)-1
 */

        // 使用while来循环处理,找到我们的数 key
        while (left <= right) {
            // 只要这个条件满足,就可以找
            mid = left + f[k - 1] - 1;
            if (key < temp[mid]) {
                //我们应该继续向数组的前面查找(左边)
                right = mid - 1;
                //为什么是 k--
                //说明
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
                //即 在 f[k-1] 的前面继续查找 k--【f[0]~f[mid-1]】
                //即下次循环 mid = f[k-1-1]-1
                // k代表当前数组元素个数,向左查询数组元素个数为 k-1 ,所以k要变成k-1
                k--;
            } else if (key > temp[mid]) {
                // 我们应该继续向数组的后面查找(右边)
                left = mid + 1;
                //为什么是k -=2
                //说明
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //3. 因为后面我们有f[k-2]个元素 所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]
                //4. 即在f[k-2] 的前面进行查找 k -=2
                //5. 即下次循环 mid = f[k - 1 - 2] - 1
                k -= 2;
            } else { //找到
                //需要确定,返回的是哪个下标
                if (mid <= right) {
                    return mid;
                } else {
                    return right;
                }
            }
        }
        return -1;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值