简述
晚些补充
代码实现
package com.yuan.common.search;
import java.util.Arrays;
/**
* 斐波那契查找
*
* @author Yuan-9826
*/
public class FibonacciSearch {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = {1, 8, 10, 89, 1000, 1234};
System.out.println("index=" + fibSearch(arr, 89));
}
/**
* 因为后面我们mid=left+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
*/
public static int[] fib() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
/**
* @param arr 目标数组
* @param key 目标数组中要查询的值
* @return 目标数组中要查询的值对应的下标,如果没有-1
*/
private static int fibSearch(int[] arr, int key) {
int left = 0;
/**
* 返回的目标下标
*/
int right = arr.length - 1;
/**
* 表示斐波那契分割数值的下标
*/
int k = 0;
/**
* 存放mid值
*/
int mid = 0;
/**
* 获取到斐波那契数列
*/
int f[] = fib();
//就是找到这样一个k:第k个斐波那契数的值 ≥ 要查找数组的长度
while (right > f[k] - 1) {
k++;
}
//因为 k 值 可能大于 arr 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
//不足的部分会使用0填充
int[] temp = Arrays.copyOf(arr, f[k]);
//实际上需求使用arr数组最后的数填充 temp
//举例:
//temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
for (int i = right + 1; i < temp.length; i++) {
temp[i] = arr[right];
}
/**
* 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。
* 该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段。
* 从而中间位置为mid=low+F(k-1)-1
*/
// 使用while来循环处理,找到我们的数 key
while (left <= right) {
// 只要这个条件满足,就可以找
mid = left + f[k - 1] - 1;
if (key < temp[mid]) {
//我们应该继续向数组的前面查找(左边)
right = mid - 1;
//为什么是 k--
//说明
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
//即 在 f[k-1] 的前面继续查找 k--【f[0]~f[mid-1]】
//即下次循环 mid = f[k-1-1]-1
// k代表当前数组元素个数,向左查询数组元素个数为 k-1 ,所以k要变成k-1
k--;
} else if (key > temp[mid]) {
// 我们应该继续向数组的后面查找(右边)
left = mid + 1;
//为什么是k -=2
//说明
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//3. 因为后面我们有f[k-2]个元素 所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]
//4. 即在f[k-2] 的前面进行查找 k -=2
//5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else { //找到
//需要确定,返回的是哪个下标
if (mid <= right) {
return mid;
} else {
return right;
}
}
}
return -1;
}
}