Mac在conda中安装各种支持包的命令

如有帮助,请随手点赞。

1、在conda中添加以下国内的镜像源

首先是,我在Mac M1上面安装了ARM版的conda环境miniforge,但是它的包默认的好像是国外的镜像源,所以很多安装包的命令会报告:“找不到该包”,或者是下载速度特别慢,所以首先在conda中添加以下国内的镜像源。

  1. 添加国内镜像源。在终端输入:
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
  1. 检查是否成功:
conda config --set show_channel_urls yes

注意:更改镜像源后,在终端里运行conda 命令会出现:

An unexpected error has occurred. Conda has prepared the above report.
Upload did not complete.
此时,在终端输入以下命令即可解决

conda config --remove-key channels

2、对conda的基本掌握:

  • pip 命令安装,例:安装jupyter
pip install jupyter
  • conda 命令安装,例:安装jupyter
conda install jupyter
  • 也可以安装多个包:
conda installl numpy pandas scipy
  • 安装固定版本的包:
conda install numpy =1.10
  • 移除一个包:
conda remove packagename 
  • 升级一个包
conda update packagename
  • 升级全部库:
 conda upgrade --all
  • 查看所有包:
conda list 
### 如何在 Visual Studio Code 中配置 Conda 创建的 Python 环境 要在 Visual Studio Code (VS Code) 中成功配置由 Conda 创建的 Python 环境,需遵循以下方法: #### 安装必要的扩展 确保已安装 Microsoft 提供的官方 **Python 扩展**。此扩展支持 IntelliSense、调试功能以及其他开发工具[^1]。 #### 设置 Conda 环境路径 Conda 是一种管理器和环境管理系统,它允许用户轻松创建独立的虚拟环境并安装所需的依赖项。为了使 VS Code 能够识别这些环境,请按照以下步骤操作: 1. 启动终端命令 `conda info --envs` 或者直接查看 Anaconda Navigator 的环境中找到目标 Conda 环境的位置。 2. 将该位置设置到 VS Code 的 Python 解释器中。可以通过快捷键 `Ctrl+Shift+P`(Windows/Linux)或 `Cmd+Shift+P`(Mac),输入 “Python: Select Interpreter”,然后从列表中选择对应的 Conda 环境解释器[^3]。 如果期望使用的特定 Conda 环境未显示,则可能需要手动激活或者重新启动编辑器来刷新可用选项。 #### 修改 settings.json 文件 对于更高级别的自定义需求,可以直接修改用户的全局设置文件 (`settings.json`) 来指定默认使用的 Python 可执行文件路径。例如: ```json { "python.defaultInterpreterPath": "/path/to/your/conda/env/bin/python" } ``` 注意替换上述 `/path/to/your/conda/env/bin/python` 为你实际的 Conda 环境下的 Python 可执行程序所在目录地址[^2]。 完成以上步骤之后,应该能够顺利利用 VS Code 开发基于 Conda 构建出来的项目了! ```python import sys print(sys.executable) ``` 通过运行这段简单的脚本可以验证当前工作区所关联的是不是预期中的那个 Conda 版本的 Python
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangboy666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值