4: The R-INLA package-----2019 Geospatial Health Data-Modeling and Visualization with R-INLA and Shi

4.2 .The inla() function

inla()函数是用来调整模型的。inla()的主要参数如下。

  • formula:指定线性预测器的公式对象。

  • data:包含数据的数据框。如果我们希望预测某些观测值的响应变量,我们需要将这些观测值的响应变量指定为NA。

  • family:字符串或字符串的向量,表示似然族,如高斯、泊松或二项式。默认情况下,族是高斯族。输入names(inla.models()$likelihood)可以看到可能的替代列表,输入inla.doc(“familyname”)可以看到单个族的细节。

  • control.compute:包含几个计算变量规格的列表,如dic是一个布尔变量,表示是否应该计算模型的DIC。

  • control.predictor:包含几个预测变量的列表,如link是模型的链接函数,compute是一个布尔变量,表示是否应该计算线性预测的边际密度。

4.3 先验参数规格化

输入names(inla.models()$prior)可以看到R-INLA中可用的先验名称,输入inla.models()$prior可以看到包含每个先验选项的列表。关于特定先验的文档可以用inla.doc("priorname")查看。

默认情况下,模型的截距被分配了一个高斯先验,其平均值和精度都等于0。其余的固定影响被分配了高斯先验,其平均值等于0,精度等于0.001。这些值可以通过inla.set.control.fixed.default()[c("mean.intercept", "prec.intercept", "mean", "prec")]查看。这些先验值可以在inla()的control.fixed参数中改变,指定一个包含高斯分布的平均值和精度的列表。

具体来说,这个列表包含mean.intercept和prec.intercept,代表截距的先验平均值和精度。而mean和prec则代表了除截距以外的所有先验均值和精度。

prior.fixed < - list(mean.intercept = <>,  
	prec.intercept = <>, 
	mean = <>, prec = <>) 
res <- inla(formula,
	data = d,
	control.fixed = prior.fixed 
)

超参数θ的先验值被分配在f()的参数hyper中。

formula <- y ~ 1 + f(<>, model = <>, hyper = prior.f)

在inla()的parameter control.family 中分配似然参数的先验值。

res <- inla(formula, 
	data = d, 
	control.fixed = prior.fixed, 
	control.family = list(..., hyper = prior.l) 
)

hyper接受一个命名的列表,其名称等同于每个超参数,其值等同于一个标明先验参数的列表。具体来说,该列表包含以下值。

  • initial:超参数的初始值(好的初始值可以使推理过程更快)。
  • prior:先验分布的名称(例如,“iid”、“bym2”)。
  • param:先验分布的参数值的向量。
  • fixed:表示超参数是否为固定值的布尔变量。
prior.prec <- list(initial = <>, prior = <>, 
	param = <>, fixed = <>) 
prior <- list(prec = prior.prec)

先验需要在超参数的内部尺度中设置。例如,iid模型定义了一个精度为τ的独立高斯分布的随机变量向量。我们可以通过输入inla.doc(“iid”)来检查这个模型的文档,看到精度τ在对数尺度上被表示为log(τ)。因此,先验需要在对数精度log(τ)上进行定义。

4.4 Example

这里我们展示了一个示例&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangboy666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值