leetcode 547. Friend Circles

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33797928/article/details/80176480

There are N students in a class. Some of them are friends, while some are not. Their friendship is transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C, then A is an indirect friend of C. And we defined a friend circle is a group of students who are direct or indirect friends.

Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j] = 1, then the ith and jth students are direct friends with each other, otherwise not. And you have to output the total number of friend circles among all the students.

Example 1:

Input:

[[1,1,0],
[1,1,0],
[0,0,1]]

Output: 2
Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
The 2nd student himself is in a friend circle. So return 2.

Example 2:

Input:

[[1,1,0],
[1,1,1],
[0,1,1]]

Output:1
Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends,
so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.
在二维数组中寻找朋友圈数,M[i][j] 代表 i 和 j 是direct friend ,如果 M[j][k] j 和 k 是direct friend ,但是 i 和 k 不是direct friend 。
和那道让我们求 无向图中有多少连通分支数目差不多leetcode原题目, 只不过有一点歧义。
如果我们说 M[i][j] = 1, i j 是direct friend , M[i][i] 又有什么意义呢? 所以如果M中用BFS搜索的话,肯定是WA的,因为可能会有 M[i][j] = 1 && M[i][i] = 0 && M[j][j] = 0 自己和自己也不是direct friend ,有点奇怪。但是题目就是这样出的。所以需要控制搜索的判断条件 M[pop][j] == 1 && !visit[j] && pop != j

class Solution {
    public int findCircleNum(int[][] M) {
        int res = 0;
        int n = M.length;
        if (M == null || M.length == 0 || M[0].length == 0 ){
            res++;
        }
        Queue<Integer> queue = new LinkedList<>();
        boolean[] visit = new boolean[n];
        for (int i = 0; i < n; i++) {
            if (visit[i]) {
                continue;
            }
            queue.offer(i);
            while (!queue.isEmpty()) {
                int pop = queue.poll();
                visit[pop] = true;
                for (int j = 0; j < n; j++) {
                    if (M[pop][j] == 1 && !visit[j] && pop != j) {
                        queue.offer(j);
                    }
                }
            }
            res++;
        }
        return res;
    }
}
阅读更多

Malfatti Circles

08-07

DescriptionnnThe configuration of three circles packed inside a triangle such that each circle is tangent to the other two circles and to two of the edges of the triangle has been studied by many mathematicians for more than two centuries. Existence and uniqueness of such circles for an arbitrary triangle are easy to prove. Many methods of numerical calculation or geometric construction of such circles from an arbitrarily given triangle have been discovered. Today, such circles are called the Malfatti circles. nnFigure 7 illustrates an example. The Malfatti circles of the triangle with the vertices (20, 80), (-40, -20) and (120, -20) are approximately nthe circle with the center (24.281677, 45.219486) and the radius 21.565935, nthe circle with the center (3.110950, 4.409005) and the radius 24.409005, and nthe circle with the center (54.556724, 7.107493) and the radius 27.107493. nnFigure 8 illustrates another example. The Malfatti circles of the triangle with the vertices (20, -20), (120, -20) and (-40, 80) are approximately nthe circle with the center (25.629089, -10.057956) and the radius 9.942044, nthe circle with the center (53.225883, -0.849435) and the radius 19.150565, and nthe circle with the center (19.701191, 19.203466) and the radius 19.913790. nnYour mission is to write a program to calculate the radii of the Malfatti circles of the given triangles. nnnInputnnThe input is a sequence of datasets. A dataset is a line containing six integers x1, y1, x2, y2, x3 and y3 in this order, separated by a space. The coordinates of the vertices of the given triangle are (x1, y1), (x2, y2) and (x3, y3), respectively. You can assume that the vertices form a triangle counterclockwise. You can also assume that the following two conditions hold. nnAll of the coordinate values are greater than -1000 and less than 1000. nNone of the Malfatti circles of the triangle has a radius less than 0.1. nnThe end of the input is indicated by a line containing six zeros separated by a space.nOutputnnFor each input dataset, three decimal fractions r1, r2 and r3 should be printed in a line in this order separated by a space. The radii of the Malfatti circles nearest to the vertices with the coordinates (x1, y1), (x2, y2) and (x3, y3) should be r1, r2 and r3, respectively. nnNone of the output values may have an error greater than 0.0001. No extra character should appear in the output.nSample Inputnn20 80 -40 -20 120 -20n20 -20 120 -20 -40 80n0 0 1 0 0 1n0 0 999 1 -999 1n897 -916 847 -972 890 -925n999 999 -999 -998 -998 -999n-999 -999 999 -999 0 731n-999 -999 999 -464 -464 999n979 -436 -955 -337 157 -439n0 0 0 0 0 0nSample Outputnn21.565935 24.409005 27.107493n9.942044 19.150565 19.913790n0.148847 0.207107 0.207107n0.125125 0.499750 0.499750n0.373458 0.383897 0.100456n0.706768 0.353509 0.353509n365.638023 365.638023 365.601038n378.524085 378.605339 378.605339n21.895803 22.052921 5.895714

没有更多推荐了,返回首页