线性关系和非线性关系&异或与非线性关系

线性和非线性解释:

线性linear,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动,在数学上可以理解为一阶导数为常数的函数。

非线性non-linear则指不按比例、不成直线的关系,代表不规则的运动和突变,一阶导数不为常数。

线性关系:

两个变量之间存在一次方函数关系,就称它们之间存在线性关系。正比例关系是线性关系中的特例,反比例关系不是线性关系。更通俗一点讲,如果把这两个变量分别作为点的横坐标与纵坐标,其图象是平面上的一条直线,则这两个变量之间的关系就是线性关系。即如果可以用一个二元一次方程来表达两个变量之间关系的话,这两个变量之间的关系称为线性关系,因而,二元一次方程也称为线性方程。推而广之,含有n个变量的一次方程,也称为n元线性方程,不过这已经与直线没有什么关系了(其实这里是超平面的概念)。


线性方程:

线性方程也称一次方程。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0


非线性关系:

非线性是指两个变量间的数学关系,不是直线,而是曲线、曲面、或不确定的属性,是不成简单比例(线性)关系的。非线性是自然界复杂性的典型性质之一;与线性相比,非线性更接近客观事物性质本身,是量化研究认识复杂知识的重要方法之一;范式能用非线性描述的关系,通称非线性关系。

非线性方程:

非线性方程对比于线性方程,是含有高次项的方程,一阶导数不为常数的方程组。

非线性之间的共性:

非线性关系虽然千变万化,但还是具有某些不同于线性关系的共性。

线性关系是互不相干的独立关系,而非线性则是相互作用,正是这种相互作用,使得整体不再是简单地全部等于部分之和,而可能出现不同于"线性叠加"的增益或亏损。

激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好像听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。

迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。
--------------------- 

作者:zbbmm 
来源:CSDN 
原文:https://blog.csdn.net/zbbmm/article/details/77152054 

 

异或与非线性关系

我们说单层神经网络(感知机)不能解决异或问题,是为什么呢?异或问题与非线性之间又有什么关系呢?

异或:即两个逻辑不一样即为真,逻辑相同即为假(相同为假,不同为真)

同或:相同为真,不同为假(解决异或问题和同或问题是一样的)

如果把异或问题表现为二维的分布,就是这样,这样就很直观的把异或问题表现为点在二维平面上分布的问题。

感知机是什么?简单来说,感知机就是能够将一个超平面内的点分为两类的一个线性可分。

感知机模型:

f(X)=sign(w*X+b),其中sign是符号函数

感知机模型,对应着一个超平面w*X+b=0,这个超平面的参数是(w,b),w是超平面的法向量,b是超平面的截距。

我们的目标是,找到一个(w,b),能够将线性可分的数据集T中的所有的样本点正确地分成两类。

如何找到(w,b)?---感知机学习算法做的事

现在,如果感知机只有两个输入,就是在二维平面上,对二维平面上的异或问题划线然后分类。

如上图所示,在”异或“问题上找不到一条直线能把X和O分开,这就是说这是一个不能用直线分类的问题,这类问题叫非线性问题。同理,“同或”问题一样不能解决。如果是“与”“或”问题就是可以解决的,这个可以自己在纸上画一下,一条线就能给分开。

所谓的感知机不能解决异或问题就是不能解决画一条线的分类问题

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页